001     834417
005     20240711085627.0
024 7 _ |a 10.1007/s11666-017-0559-0
|2 doi
024 7 _ |a 1059-9630
|2 ISSN
024 7 _ |a 1544-1016
|2 ISSN
024 7 _ |a WOS:000402743300001
|2 WOS
037 _ _ |a FZJ-2017-04375
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 0
|e Corresponding author
245 _ _ |a Monitoring and Improving the Reliability of Plasma Spray Processes
260 _ _ |a Boston, Mass.
|c 2017
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1500013668_23120
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Monitoring and improving of process reliability are prevalent issues in thermal spray technology. They are intended to accomplish specific quality characteristics by controlling the process. For this, implicit approaches are in demand to rapidly conclude on relevant coating properties, i.e., they are not directly measured, but it is assumed that the monitored variables are in fact suggestive for them. Such monitoring can be performed in situ (during the running process) instead of measuring coating characteristics explicitly (directly) and ex situ (after the process). Implicit approaches can be based on extrinsic variables (set from outside) as well as on intrinsic parameters (internal, not directly adjustable) having specific advantages and disadvantages, each. In this work, the effects of atmospheric plasma spray process variables are systemized in process schemes. On this basis, different approaches to contribute to improved process reliability are described and assessed paying particular attention to in-flight particle diagnostics. Finally, a new test applying spray bead analysis is introduced and first results are presented.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rauwald, Karl-Heinz
|0 P:(DE-Juel1)129653
|b 1
|u fzj
700 1 _ |a Mücke, Robert
|0 P:(DE-Juel1)129641
|b 2
|u fzj
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 3
|u fzj
773 _ _ |a 10.1007/s11666-017-0559-0
|g Vol. 26, no. 5, p. 799 - 810
|0 PERI:(DE-600)2047715-6
|n 5
|p 799 - 810
|t Journal of thermal spray technology
|v 26
|y 2017
|x 1544-1016
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834417
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129641
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THERM SPRAY TECHN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21