000834419 001__ 834419
000834419 005__ 20240711085627.0
000834419 0247_ $$2doi$$a10.1016/j.surfcoat.2017.05.003
000834419 0247_ $$2ISSN$$a0257-8972
000834419 0247_ $$2ISSN$$a1879-3347
000834419 0247_ $$2WOS$$aWOS:000406988200026
000834419 037__ $$aFZJ-2017-04377
000834419 082__ $$a620
000834419 1001_ $$0P:(DE-Juel1)144899$$aRezanka, Stefan$$b0
000834419 245__ $$aInvestigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack
000834419 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000834419 3367_ $$2DRIVER$$aarticle
000834419 3367_ $$2DataCite$$aOutput Types/Journal article
000834419 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499937429_16517
000834419 3367_ $$2BibTeX$$aARTICLE
000834419 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834419 3367_ $$00$$2EndNote$$aJournal Article
000834419 520__ $$aIn modern gas turbines, highly loaded components are internally cooled and furthermore covered with thermal barrier coatings (TBCs) to withstand the harsh operating conditions with temperatures exceeding the application limit of such coatings. Under realistic operating conditions, siliceous minerals, of a calcium-magnesium-aluminum-silicate (CMAS) composition, are ingested into the turbine and deposited on the TBCs. Besides erosion, this also leads to degradation by chemical interaction.The plasma spray-physical vapor deposition (PS-PVD) process is an advanced method for manufacturing TBCs, which fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). Due to the unique plasma conditions, coatings with columnar microstructures exhibiting high strain tolerance can be created. However, because of the high amount of open porosity the resistance of such structures to CMAS and erosion attack was expected to be low.In the present work, PS-PVD TBCs were investigated in a burner rig facility under thermal gradient cycling conditions and simultaneous CMAS attack. The interactions of the PS-PVD-deposited YSZ and the CMAS melt were studied by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) and compared to EB-PVD coatings. Additionally, the resistance of PS-PVD TBCs to erosion is compared to APS TBCs by means of room temperature tests according to ASTM G76-13.
000834419 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000834419 588__ $$aDataset connected to CrossRef
000834419 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b1$$eCorresponding author
000834419 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b2
000834419 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3
000834419 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4
000834419 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5
000834419 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2017.05.003$$gVol. 324, p. 222 - 235$$p222 - 235$$tSurface and coatings technology$$v324$$x0257-8972$$y2017
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.pdf$$yRestricted
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.gif?subformat=icon$$xicon$$yRestricted
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834419 8564_ $$uhttps://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834419 909CO $$ooai:juser.fz-juelich.de:834419$$pVDB
000834419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b1$$kFZJ
000834419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b2$$kFZJ
000834419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b3$$kFZJ
000834419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000834419 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000834419 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000834419 9141_ $$y2017
000834419 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834419 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834419 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2015
000834419 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834419 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834419 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834419 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834419 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834419 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834419 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834419 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000834419 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834419 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000834419 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000834419 980__ $$ajournal
000834419 980__ $$aVDB
000834419 980__ $$aI:(DE-Juel1)IEK-1-20101013
000834419 980__ $$aI:(DE-82)080011_20140620
000834419 980__ $$aUNRESTRICTED
000834419 981__ $$aI:(DE-Juel1)IMD-2-20101013