001     834419
005     20240711085627.0
024 7 _ |a 10.1016/j.surfcoat.2017.05.003
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000406988200026
|2 WOS
037 _ _ |a FZJ-2017-04377
082 _ _ |a 620
100 1 _ |a Rezanka, Stefan
|0 P:(DE-Juel1)144899
|b 0
245 _ _ |a Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1499937429_16517
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In modern gas turbines, highly loaded components are internally cooled and furthermore covered with thermal barrier coatings (TBCs) to withstand the harsh operating conditions with temperatures exceeding the application limit of such coatings. Under realistic operating conditions, siliceous minerals, of a calcium-magnesium-aluminum-silicate (CMAS) composition, are ingested into the turbine and deposited on the TBCs. Besides erosion, this also leads to degradation by chemical interaction.The plasma spray-physical vapor deposition (PS-PVD) process is an advanced method for manufacturing TBCs, which fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). Due to the unique plasma conditions, coatings with columnar microstructures exhibiting high strain tolerance can be created. However, because of the high amount of open porosity the resistance of such structures to CMAS and erosion attack was expected to be low.In the present work, PS-PVD TBCs were investigated in a burner rig facility under thermal gradient cycling conditions and simultaneous CMAS attack. The interactions of the PS-PVD-deposited YSZ and the CMAS melt were studied by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) and compared to EB-PVD coatings. Additionally, the resistance of PS-PVD TBCs to erosion is compared to APS TBCs by means of room temperature tests according to ASTM G76-13.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mack, Daniel Emil
|0 P:(DE-Juel1)129630
|b 1
|e Corresponding author
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 2
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 3
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 5
773 _ _ |a 10.1016/j.surfcoat.2017.05.003
|g Vol. 324, p. 222 - 235
|0 PERI:(DE-600)1502240-7
|p 222 - 235
|t Surface and coatings technology
|v 324
|y 2017
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834419/files/1-s2.0-S0257897217304590-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834419
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21