001     834427
005     20240712101013.0
024 7 _ |a 10.5194/acp-17-7807-2017
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/14785
|2 Handle
024 7 _ |a WOS:000404653100001
|2 WOS
024 7 _ |a altmetric:21404844
|2 altmetric
037 _ _ |a FZJ-2017-04384
082 _ _ |a 550
100 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 0
245 _ _ |a Estimating the atmospheric concentration of Criegee intermediates and their possible interference in a FAGE-LIF instrument
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498800377_19695
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analysed the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns in the boreal forest and rural environments of Finland and Germany, respectively, and estimated the abundance of stabilised Criegee intermediates (SCIs) in the lower troposphere. Based on laboratory tests, we propose that the background OH signal observed in our IPI-LIF-FAGE instrument during the aforementioned campaigns is caused at least partially by SCIs. This hypothesis is based on observed correlations with temperature and with concentrations of unsaturated volatile organic compounds and ozone. Just like SCIs, the background OH concentration can be removed through the addition of sulfur dioxide. SCIs also add to the previously underestimated production rate of sulfuric acid. An average estimate of the SCI concentration of  ∼  5.0  ×  104 molecules cm−3 (with an order of magnitude uncertainty) is calculated for the two environments. This implies a very low ambient concentration of SCIs, though, over the boreal forest, significant for the conversion of SO2 into H2SO4. The large uncertainties in these calculations, owing to the many unknowns in the chemistry of Criegee intermediates, emphasise the need to better understand these processes and their potential effect on the self-cleaning capacity of the atmosphere.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hens, Korbinian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tatum Ernest, Cheryl
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Martinez, Monica
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nölscher, Anke C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sinha, Vinayak
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paasonen, Pauli
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Petäjä, Tuukka
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sipilä, Mikko
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Elste, Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Plass-Dülmer, Christian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Phillips, Gavin J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kubistin, Dagmar
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Williams, Jonathan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vereecken, Luc
|0 P:(DE-Juel1)167140
|b 14
700 1 _ |a Lelieveld, Jos
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Harder, Hartwig
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
773 _ _ |a 10.5194/acp-17-7807-2017
|g Vol. 17, no. 12, p. 7807 - 7826
|0 PERI:(DE-600)2069847-1
|n 12
|p 7807 - 7826
|t Atmospheric chemistry and physics
|v 17
|y 2017
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834427/files/acp-17-7807-2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834427
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)167140
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21