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(b) E ciency plot

Figure 4.1: 100k particles, multipole order p 10 and tree depth dmax 4.

both NUMA nodes when exceeding a quantity of 12 threads without considering this
in terms of memory management. Meaning, that the threads running on NUMA node
1, in order to get the data to compute on, permanently need to request memory access
from NUMA node 1, which leads to higher task execution times and in turn to a higher
parallel execution time.

4.3 S I S

In analogy to the previous section we subsequently analyze the runtime behavior of a
smaller particle system covering only 1k particles by means of plot 4.2a. The line and
area colors used in the plot have the same meaning as previously described.
Even though load-balancing through work-stealing leads to a runtime improvement

independently from the number of used threads here too, the curves are by far not that
close to the ideal curve as for the large particle system. A possible reason for this could
be that hiding of memory access latencies is less e ective due to less computational
work. This would also explain the fact that the e ciency decline due to the usage of two
NUMA nodes becomes more apparent in the scaling and e ciency plots for the small
particle system. The reason for the lower computational e ort for one thing is the lower
amount of particles and for another thing the lower multipole order. The e ciency plot
in gure 4.2b depicts the massive e ciency decline even more clear.
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Figure 4.2: 1k particles, multipole order p 3 and tree depth dmax 3.

5 C & F W
We described a task-based approach for an intra-node parallelization of the FMM by
means of std::thread. In the course of that, we presented an FMM-aware multi-queue
and a work-stealing implementation to equally distribute tasks among threads dynami-
cally. Considering the small input set with 24 threads, our intra-node parallelization
with work-stealing led to an overall parallel runtime of 2.7 ms. In comparison with the
sequential runtime of 24.6 ms this leads to a speedup of 9.1 and brings us closer to the
1 ms goal.
However, we have not yet achieved it. Due to the observed e ciency decline (cf. 4.2

and 4.3), the implementation of a NUMA-aware memory management is next up on
our agenda. In the course of this the work-stealing approach also needs to be adapted
to the NUMA topology, e.g. by preferably stealing tasks from threads running on the
same NUMA domain. So far the tasks are taken from the MultiQueue and executed in
the order according to the sequential FMM’s work ow without considering the critical
paths through the tree. Due to this another step is the implementation of a priority
multi-queue with potentially dynamically adaptable priorities to execute tasks on the
critical paths preferential. Especially through the latter we gather knowledge about task
dependencies and task granularity in order to advance towards a static load-balancing
through FMM-aware task distribution.

6 A
To begin with, I am grateful to my supervisor David Haensel for patiently answering
my questions regarding e.g. the C++ implementation in general and template meta
programming in particular. Furthermore I would like to give thanks to Ivo Kabadshow
not only for repeatedly explaining the FMM’s work ow to me, but also for the night-time
programming sessions. In addition I would like to thank Andreas Beckmann for his
support including performance measurements and shell scripting. Moreover I gratefully
acknowledge the support of Michael Hofmann not merely regarding the application
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Now we can derive the relation for the Chebyshev iterations. Starting with the initial
vector v0, we have:

v1 e
H cI v0 (2.7)

vk 1 Ck 1 H v0 2
k 1

e
H cI Ck H v0 k k 1Ck 1 H v0 (2.8)

2
k 1

e
H cI vk k k 1vk 1 (2.9)

The same holds for the case with multiple vectors. We will denote the shifted matrix
H cI as H. Note that the matrix H remains Hermitian.
Since all the eigenvalues of the Hermitian matrices reside on a real line, by using the

Chebyshev polynomials, we are capable of ltering out the eigenvalues in an interval
of our choice. In practice, we would rst calculate the estimate for the most dominant
eigenvalue 1 and set 1 . We de ne the interval in a way that is mapped to
a lower estimate for d and is mapped to the estimate of nev . In this way, we get the
improved convergence towards nev most dominant eigenvalues. Using the three-term
recurrence relation (2.9) we can calculate iterations for the Chebyshev lter. A lot more
about eigensolvers can be found in [5].
Chebyshev lter takes up the most of the computation time of the whole solver, as

we can see on the Figure 2.2. This gives us a good motivation for introducing parallel
programming strategies.

< 1%

90%

6%

4%Res iduals  convergence

Rayleigh Ritz

Chebyshev filter

Lanczos

Figure 2.2: Time usage chart for ChASE

More on the ChASE eigensolver and applications can be found in [1], [4] .

3 S
In this section we describe the strategies which we use for implementing the Chebyshev
polynomial acceleration. This algorithm consists of successive iteration of the three
terms recurrence relation of the form

X m 1
mHX

m
mX

m 1 m 2 3 k X 1 HX 0 H d d X i d nev

(3.1)
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Figure 2.1: The discretization grid.

domain a b is an interval. A subdivsion of this interval into N subintervals

k xk 1 xk of equal size yields the simplest representation of structured meshes.
The N 1 grid points are numbered from left to right. In multi-dimensions,a structured
mesh is a net of grid lines (Figure 2.1) with

xi i x i 0 1 N (2.5)

The rst order derivative in 1-D can be approximated by the central di erence scheme
which is of second order accuracy.

u
x

i

ui 1 ui 1

2 x
(2.6)

The same principle can be extended for second order derivatives in 1-D as second-order
approximation at node i.

2u
x2

i

ui 1 2ui ui 1

x 2
(2.7)

On a nonuniform mesh in 2D, the coe cients are di erent and must be derived indi-
vidually for each grid point. Since, the equation 2.3 is time-dependent, suitable choice
of time-di erencing is important. Explicit, Implicit and Trapezoidal methods are the
simplest schemes. More accurate schemes like Range-Kutta could also be employed.

3 T
Turbulence can be described as uid moving in complex and indeterministic way. Its very
di cult to predict the future state of turbulent ows due to its complexity. Turbulence
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Computed in LES Modeled in LES

u

Figure 3.2: Energy spectrum showing cut-o wavenumber kc separating resolved and modeled
scales [11].

can be modeled with eddy viscosity. The mathematical structure is similar to that of
molecular di usion described by molecular viscosity.

ij
1

3 kk ij 2 tS (3.6)

where S is the large scale strain-rate tensor and t is the SGS turbulent viscosity/eddy
viscosity. This eddy viscosity t is fed to Navier-Stokes through the e ective viscosity

e mol t.

3.2 C S

The rst SGS model developed to model the eddy viscosity t is the Smagorinsky-Lilly
model [13]. It models the eddy viscosity as:

t Cs
2 S (3.7)

where V
1
3 with V x y z and

S 2SijSij with Sij
1

2

ui
xj

uj
xi

(3.8)

The most important challenge for the Smagorinsky models is determining the parame-
ters Cs with given . It is the parameter controlling the rate of kinetic energy dissipation
happening at small scales. Cs is given explicitly in the formulation and a value between
0 1 0 2 has been found to yield good results for wide range of ows except for wall
bounded ows. Regardless, this simple scheme su ers from high dissipative characteris-
tics and is not so robust parameters with a non-adaptive value of Cs. This may lead to
some undesirable and non-physical behaviour of the system.

3.3 D S

Germano and Lilly proposed in [7] a procedure where the Smagorinsky model constant
Cs is computed dynamically based on the information of the resolved scales u. The idea
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Figure 3.3: Energy spectrum showing cut-o wavenumbers for ltered kc and kc test ltered
quantities [11].

is to apply a lter for the second time to the equations of motion, i.e. momentum and
continuity equations. The new explicit lter width is greater than that of , usually
twice that of the grid lter. Both lters produce a resolved eld. The di erence between
the contribution of these elds is the resolved turbulent stress usually referred as Leonard
stress Lij which is used to compute Cs adaptively. In Figure 3.3 the orange coloured
region represents the Leonard stresses Lij which are de ned by Germano [6] as

Lij Tij ij uiuj uiuj (3.9)

where Tij uiuj uiuj is the residual stress tensor of the test lter and ij uiuj uiuj is
the Subgrid-Scale stress of grid lter that is test ltered again.
By applying Smagorinsky model for stresses in the Germano identity 3.9 and minimiz-

ing the error associated due to modeling in the least-square sense, we get an expression
for the dynamic Cs, i.e.

C2s
LijMij

MijMij
(3.10)

where Mij 2 2 S Sij
2 S Sij and .

However, expression 3.10 can be numerically unstable since the numerator could
become negative and large uctuations in Cs are observed. Hence, additional averaging
of the error is done, resulting in

C2s
LijMij

MijMij
(3.11)

The averaging can be as simple as volume averaging with respect to the neighbours
or spatial averaging over the entire domain. For details about the explicit lters used
during the simulations are described in the following paragraphs.
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Figure 5.1: Strong scaling of NEST with varying number of MPI ranks. The number of OpenMP
threads is held constant at 1. The shaded region indicates the SMT region of the KNL processor,
i.e. the number of processes exceeds the number of cores available on the card.

implementation of NEST. The e ciency

t 1

nPU t nPU

is used to evaluate the scaling behaviour for a di erent number of PUs. Here, t nPU is
the execution time of the program on a n processing units (PU). A PU names a single
thread, i.e. a single stream of instructions, but imply nothing about the a nity to a
certain process. Therefore, 4 PU may be realized, for example, as 2 MPI ranks with 2
OpenMP threads each or as 1 MPI rank with 4 OpenMP threads.
In this report, we consider only the strong scaling performance of the program. Strong

scaling is harder to achieve, since the total work stays constant during the analysis.
Therefore, the work per processing unit will decrease as the number of PUs is increasing.
Hence, communication and computation cannot be overlapped as e ciently and e ects
like synchronization may become visible.
The presented graphs are recorded with NEST 2.10.0 compiled with GCC 6.1.0 and

linked against the Intel-MPI 5.1.3. The NEST software is not a benchmark on its own,
but a scienti c neural simulator. Therefore, NEST is not designed like PMBW or ezFIO to
output data that is already a statistical value of multiple runs. The JUBE framework [6],
written and maintained in Jülich, is used to organize multiple runs and to run a basic
statistical analysis. Each data point is the minimum time of ve independent runs. The
minimum is chosen because the distribution of computing time is inherently asymmetric.
It only has a xed lower limit, while the upper limit may be, in the worst case, arbitrarily
large due to operating system e ects.
The e ciency plot for both cases, MPI and OpenMP, can be considered as fairly high.

Especially the super-linear behaviour of the MPI version at full-use of the KNL processor
looks very promising. E ciency drops only for large a number of cores, when the SMT
region of the KNl is reached, i.e. multiple threads are scheduled per core. The inferior
performance of OpenMP with respect to MPI is expected, since the memory allocation
of NEST is not yet optimized for high numbers of OpenMP threads. The optimization is
planned for the upcoming releases.
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Figure 5.2: Strong scaling of NEST with varying number of OpenMP threads. The number of MPI
ranks is held constant at 1. The shaded region is the SMT region of the KNL processor.
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Figure 5.3: Comparison of KNL 7230 and Xeon CPU E5-2680v4 processor. The number of
OpenMP threads is xed to one during the whole benchmark. The shaded region highlights
the SMT region, as above.

Although the e ciency of NEST on KNL platforms is very promising, the time to
solution is slower than on Xeon processors.
The result shown in Figure 5.3 was produced using the visualization nodes of JULIA

as a reference (compare Section 2 for further information on the hardware).
The reason for this performance di erence is not yet fully clear. One explanation

under investigation is the following: The Xeon Phi processor consists of a big number of
low-performance core (Intel Atom). It is possible that the Xeon processor architecture is
more suitable to the task than the massively parallelized approach with smaller cores
because of a better processor architecture.

6 C
This report presented an initial performance analysis of JULIA’s KNL- and DataWarp
nodes. The hierarchical memory architecture of Intel Xeon Phi Knights Landing pro-
cessors that incorporates an additional layer of high-bandwidth memory, can prove
bene cial for programs that use ranges of data frequently which are larger than the
processor’s cache. The PMBW benchmark shows that maximal performance in terms
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PLI B I

Optimization and Parallelization

Abstract The method 3D-Polarized Light Imaging (3D-PLI)
is a promising tool in mapping the ber tracts of the human
brain on both, small and large scales. In the imaging process
the signal is degraded by several sources of noise, which reduc-
tion is of importance for the quality of the 3D-reconstruction.
A parallelized Independent Component Analysis (ICA) based
method was successfully adapted to the JURECA supercom-
puter environment and extended to seperate components based
on their distribution being sub- or supergaussian.

Fabian Preiß
Fakultät Mathematik und

Naturwissenschaften
Uni Wuppertal

Germany
f.preiss@uni-wuppertal.de

1 I /M
In the challenge of understanding the human brain, there is a variety of methods
available in order to analyze structures on di erent scales (Figure 1.1). While methods
like electron microscopy allow to show the structure of single axons and methods
based on uorescence microscopy can be used to identify local connections, they lack
the ability of tracking more distant ber tracts. On the other side classical dissection
methods can be used in order to analyze the brain as a whole, however providing no
further insight on the connections of the ber tracts. More recently di usion MRI has
prooven itself as a successfull tool in tracking nerve bers of the human brain, while
unfortunately being restricted to resolutions in the mm-scale. Here 3D-Polarized Light
Imaging (PLI) has been introduced as a new approach [1], reaching voxel dimensions of
1 3 1 3 70 m [4] while still being applicable to map the whole brain. This method is
exploiting the birefringent properties of the myelin sheath surrounding nerve bers[2].

neuro laments

myelinated axons

unmyelinated axons

ber tracts

large ber tracts

human brain

10 nm 100 nm 1 m 10 m 100 m 1 mm 10 mm 100 mm 1 m

electron microscopy

light microscopy
di usion MRI di usion MRI

dissection techniques

3D Polarised Light Imaging (3D-PLI)

Figure 1.1: Available methods for the structure analysis of the human brain on di erent scales.

The imaging process for 3D-PLI takes place mainly on the Large Area Polarimeter
(LAP) and the Polarizing Microscope. The increased resolution of the PLI-Microscope
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Brain Sectioning
Imaging

Image Analysis

3D Reconstruction

3D Fiber Orientation Analysis

Figure 1.2: Work ow from sectioning the brain towards a 3D-Fiber map.

however adds additional challenges to the process of mapping a whole human brain,
as the specimen has to be sectioned into ca. 3500 slices of about 70 m while a typical
slice takes up to 500GB of space for the human brain[2]. In return similar e orts are
taken in mapping the ber tracts in rat and vervet monkey brains. The raw datasets are
then processed in an image analysation pipeline to reduce unwanted e ects, as well
as extracting informations about the direction of the polarization, the transmittance
of the probe and the retardation of the signal. Further steps combine the information
gathered for every slice in order to achieve a 3D-reconstruction of the full brain and the
3D-structure of the nerve ber connections (Figure 1.2).
This work is focused on applying an independent component analysis within the

image analysation pipeline, which promises reduction of unwanted signals, as well as
an improved feature extraction.

2 P D
The deployed setup for the imaging process of 3D-PLI consists of a light source, 2
polarizers, a retarder, a stage for the probe and a camera device (Figure 2.1). The LAP
furthermore allows a tilting of the probe, while the PLI-Microscope is driven by a motor
for tile-wise scanning of the probe with overlapping elds of views[3]. The generated
data is stored in HDF5 container les[13], typically in uncompressed 3d-arrays where
2 dimensions map to the xy-coordinates and the remaining dimension to the di erent
angles under which the images were taken.
Due to the birefringence of the probe, the measured light intensity I varies in a

sinusodial manner with a change of the polarizers rotation angle . I is referred to as
the light intensity pro le

I
I0
2

1 sin 2 2 sin (2.1)

110

















Si
gn
al
of
in
er
re
st

Li
gh
t
sc
at
te
ri
n
g

Im
ag
e
N
oi
se

D
ir
t
on

P
ol
ar
iz
er

As x Wx s

Sources s Measurements x Reconstructed s

Selection of Signal

Figure 2.3: The optical measurements xi of a 3D-PLI slice are modeled by a linear mixture x As

of di erent unknown underlying physical sources sj. After the application of the ICA method,
a set of reconstructed sources s is found allowing for a selection of signals of interest. The
estimated mixing matrix W 1 can be applied on the selected signals, resulting in noise and
artifact reduction.

3 R
The parallel implementation of the infomax algorithm by Tabbi [12] has been extended to
allow the optional use of the extended infomax algorithm as desribed in equation 2.23 and
was adapted for the use on JURECA. In this process the initial program implementation
has been signi cantly modi ed. The program has been tested on several comparably
small datasets requiring between 576MiB and a few Gigabyte of diskspace on up to 48
processors. For the small dataset the original implementation takes about 70 s on 48
processors, whereas the extended infomax implementation increases the runtime by
about a factor of two. This does not come to a surprise, as especially the calculation of
the Kurtosis is computationally expensive. It has to be noted, that the computation time
for both methods heavily depends on the choice of a number of tuning parameters that
depend on the measurement’s setup as well as the observed and a more experienced
choice might considerably change this statement.
Figure 3.1 shows, that the extended ICA implementation on JURECA successfully

retrieved a number of independent source signals from the original measurements.
The method impressively shows how otherwise hidden information that is distributed
between the measurements can be retrieved and unveils signi cant structures that can
be attributed to the birefringence of the myelin. In this example only the two rst
reconstructed sources certainly contain sources of interest, while the remaining ones
contain mostly noise. However using similar tuning parameters on the larger dataset
yielded one additional source that is clearly of interest and the order of the sources was
not contained.
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Figure 2.1: Natural 2 2 grid con guration for implementing mathematical morphology operations
on GPU. For the state of the example, we assume that standard image processing Lena image
has dimensions 8 8 and we use blocks that consist of 4 4 threads.
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Figure 2.2: Problems that occur during implementation of the basic gray-scale morphology
operations with 3 3 square structuring element after con guring the 2-dimensional grid. We
can see that the structuring element can go out of borders of the image (for example, while
calculating structural change of the pixel (0,0) of block (0,0)). Also, in some cases, for the
calculation of a given morphological operation, we have to use parts of the image that we
associate to “other” blocks which can lead to branching and unwanted memory access (for
example, while calculating structural change of the pixel (3, 3) of block (0, 0)). Red color
indicates states when problems occur.
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Figure 2.3: The image after adding the additional padding to assure that the structuring element
will never go out of image borders. To assure that the result will stay unchanged, padding
pixels should be lled with a maximal pixel value (1) for calculating erosion or a minimal
pixel value (0) for calculating dilation.

To solve the second problem, optimizing memory access, one should consider using
CUDA shared memory. Using shared memory in the right way usually leads to a
performance boost. Shared memory is on-chip GPU memory, much faster than local and
global memory. Shared memory latency is roughly 100 lower than uncached global
memory latency. Moreover, it is allocated per thread block, so all threads in the block
have access to the shared memory (see [9]). The main idea is to give a block the whole
part of the image that it needs for computing morphological operations. That means
that we have to store the part of the image associated with this block in the shared
memory, as well as the padding for the structuring element. Therefore, the width of
the tile stored in the shared memory will be blockDim x padding, and the height of
the tile stored in shared memory will be blockDim y padding where padding dim 2

and dim is a size of the side of the structuring element as before. Example of the shared
memory tile associated to the block 0 0 from the Lena example is given in Figure 2.4a.
To sum up, before a thread calculates a minimum or a maximum it loads a part of the
image (with the padding) in the shared memory. Since we also have to consider the
image padding, few of the threads have to store more data. We overcome this problem
using the following code:
1 for (int i = threadIdx.y; i < sharedHeight; i += blockDim.y) {

2 for (int j = threadIdx.x; j < sharedWidth - 1; j += blockDim.x) {

3 smem[i * sharedWidth + j] = in_ptr[i * in_lda + j];

4 }

5 }

For further explanation, one can look at the Figure 2.4b which shows how the job of
storing data in the shared memory is divided by GPU threads under assumption that
we use a 3 3 structuring element and blocks of size 4 4 like in the previous Lena
example. Also, one could notice that the interior for loop iterates while counter j is
less than sharedWidth 1. The reason is that the width of the shared memory tile is
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(a) Tile in the shared memory associated to
the block 0 0 in our Lena example. The
padding is also included in the tile, as well
as parts of the image originally related to
another block.
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(b) Storing pixel values in the tile of shared
memory related to each block in Lena exam-
ple. Since 2-dimensional grid con guration
is used, threads are labeled as ordered pairs
x y where x and y are appropriate block
coordinates.

Figure 2.4: Using CUDA shared memory in the GPU implementation.

extended by 1 to prevent bank con icts.

2.3 R

In this section, we present performance measurement and results of our implementation
of basic gray-scale morphology operations. For performance tests we used NVIDIA Tesla
K40 GPU devices and Intel Xeon E5-2650 CPUs. We are comparing our approach with a
straightforward CPU implementation which is based on the algorithm we mentioned in
Section 2.2. We are measuring time needed for the gray-scale erosion using 3 3 square
structuring element on the set of 12 gray-scale testing images with respective widths
between values 64 and 8192. As we can see in Figure 2.5a, the GPU implementation
outperforms straightforward CPU implementation which uses only 1 CPU thread. More-
over, times related to the CPU implementation are approximately 6 to 8 times longer
compared to the time used by the GPU implementation, which is something that one
could expect. Furthermore, since the log-log plot is used, one can make sure that the
assumption of complexity O n2 was correct. On the other hand, Figure 2.5b shows
that CPU implementation that uses 32 threads gives us times that are very close to our
approach, considering we are using only 3 3 structuring element. This is expected if
we think of the number of comparison operations on such a small structuring elements.
However, when we compare the time needed for erosion with 7 7 structuring element
on the same set of images (results are showed in Figure 2.6a) we can see that the GPU
approach gives us a signi cant boost.
Last but not least, we compared our approach with two commonly used image pro-

cessing libraries, OpenCV and CImg. We measured the time needed for erosion with
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Figure 4.1: Smallest enclosing circle of circles problem. The goal is to nd the smallest circle (a
circle with the smallest radius) that contains all of a given set of circles (blue circles). The
solution is marked with red color.

in terms of Loewner order if A B is positive semide nite. One could show that
matrices which are the result of mapping from the bi-cone � are in the Loewner interval

I I A M Sym 2 I A I . The matrix I corresponds to the color
black and the matrix I corresponds to the color white.
When we think carefully about the Loewner order we can see that the Loewner order is

not a total order since there exists a matrix which is not positive semide nite. Therefore,
the supremum and the in mum of the set of matrices is not necessary an element of
the set since all the matrices in the set do not need to be even comparable. It is shown
(see [6] and [4]) that the problem of nding the minimum and the maximum among
a set of matrices, A max A1 An , is equivalent to solving the smallest enclosing
circle of circles problem on circles that are converted from the set of matrices. For the
conversion, the following mapping is used: a circle which is a result of the conversion is
a circle with center in x y and radius r where x 2 b, y c a and r c a .
This mapping is obviously a bijective mapping.

4.3 S

Smallest enclosing circle of circles problem (from now on referred as smallest circle
problem) is a problem of computing the smallest circle that contains all of a given set of
circles in the Euclidean plane (see [7]). Figure 4.1 shows an example of the nding a
solution to the Smallest circle problem. Since nding exact solution of this problem is
computationally expensive, nding a “right” approach to use is an important task.
In our approach, we use a subgradient method to solve the problem numerically. It is

a standard iterative optimization method usually used for solving convex minimization
problems. Since the set of circles we are using for calculations is usually reasonably small
(as mentioned before, the size of the side of the structuring element is usually between
3 and 21) there is no need to use more sophisticated methods. The idea is to formulate
the smallest enclosing circle of circles problem as an unconstrained non-di erentiable
convex program:

min f x y max
i 1 n

ai x 2 bi y 2 ri
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Figure 2.1: Left: Quadrature rule with explicit Q . Right: Quadrature rule with implicit Q

2.1 IMEX SDC
In many practical applications, systems of ODEs that contains both sti and non-sti
elements must be solved. Such an IVP is given below

u
t

f E u t f I u t t 0 T

u 0 u0

(2.5)

Two straight-forward approaches naturally arise: to solve the whole system using an
implicit scheme or to use an explicit method with a short time step. The basic premise
of an IMEX solver is to provide a compromise – the sti parts of the system are solved
with an implicit solver to ensure stability, while the non-sti parts are solved with an
explicit solver to reduce computational load. SDC method is easily modi ed to create
semi-implicit or IMEX schemes. Equations (2.3) and (2.4) can be easily modie ed to
give a semi-implicit scheme:

Uk 1
m 1 Uk 1

m tm f E Uk 1
m f E Uk

m tm f I Uk 1
m 1 f I Uk

m 1 Skm (2.6)

3 G PDE
In this section we look at a general reaction-di usion system which can be represented
in the general form

u
t

D u R u

where u u x t represents the unknown function, D is a diagonal matrix of di usion
coe cients and R is a reaction term. We will treat the di usion part implicitly and the
reaction term explicitly. After applying IMEX SDC scheme we get following semi-discrete
equation

Uk 1
m 1 x D tm Uk 1

m 1 x Uk 1
m x tmR Uk 1

m x

R Uk
m x D Uk

m 1 x Skm
bkm x m 0 M 1

(3.1)
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Figure 3.1: Finite Element space. Left: Mesh consisted of squares. Right: Linear test function.

where Uj, j 1 N are to be determined. In order to (3.4) hold for every vh Vh it is
su cient that it holds for every basis function, so we get next formulation of problem
(3.4): nd U1 UN

N such that

DUj
N

j 1

j x i x dx
N

j 1

Uj j x i x dx f x i x dx i 1 N

(3.5)
If we de ne matrices A, M and vector F in a following way

A aij aij j x i x dx i j 1 N

M mij mij j x i x dx i j 1 N

F fi fi f x i x dx i 1 N

we see that U1 UN is the solution of next linear system

DA M U F

The next question is how will we choose space Vh. First we have to assume that is
a bounded domain with polygonal boundary so that it can be covered by a nite
number of triangles or squares. It is assumed that any pair of triangles or squares
intersect along a complete edge, at a vertex, or not at all, as shown in Figure 3.1a. With
each interior node i we associate a basis function i which is equal to 1 at node i and is
equal to 0 at all the other nodes. An example of a test function is shown in Figure 3.1b.
The only thing left to discuss is how will we treat boundary conditions since we have

the condition ui 0 if i is an exterior node. The easiest solution would be to put 0 on
each entry of ith row of matrix A except the diagonal one where we put 1. Also, we set
all values of ith row of matrix M to 0. That way we have assured that ui 0. In case of
non-homogeneous Dirichlet conditions or Neumann conditions, the matrices A and M
are easily modi ed. Case of periodic boundary conditions will be discussed later. This
method is called the Finite Element Method. For more details see e.g. [8].
Now, let us go back to the Equation (3.1). We can write Uk 1

m 1 x
N
j 1
Uk 1
m 1 j j x ,
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