001     834448
005     20240625095125.0
024 7 _ |a 10.1093/brain/awx095
|2 doi
024 7 _ |a pmid:28459997
|2 pmid
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a WOS:000402726600013
|2 WOS
024 7 _ |a altmetric:19665015
|2 altmetric
037 _ _ |a FZJ-2017-04404
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Minnerop, Martina
|0 P:(DE-Juel1)131622
|b 0
245 _ _ |a Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia.
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507883658_2855
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kurzwelly, Delia
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Wagner, Holger
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Soehn, Anne S
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Reichbauer, Jennifer
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Tao, Feifei
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rattay, Tim W
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Peitz, Michael
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rehbach, Kristina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 9
700 1 _ |a Pyle, Angela
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Thiele, Holger
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Altmüller, Janine
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Timmann, Dagmar
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Karaca, Ilker
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Lennarz, Martina
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Baets, Jonathan
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hengel, Holger
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Synofzik, Matthis
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Atasu, Burcu
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Feely, Shawna
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Kennerson, Marina
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Stendel, Claudia
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Lindig, Tobias
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Gonzalez, Michael A
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-Juel1)131795
|b 25
700 1 _ |a Sturm, Marc
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Roeske, Sandra
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Jung, Johanna
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Bauer, Peter
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Lohmann, Ebba
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Herms, Stefan
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Heilmann-Heimbach, Stefanie
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Nicholson, Garth
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Mahanjah, Muhammad
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Sharkia, Rajech
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 36
700 1 _ |a Brüstle, Oliver
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Klopstock, Thomas
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Mathews, Katherine D
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Shy, Michael E
|0 P:(DE-HGF)0
|b 40
700 1 _ |a de Jonghe, Peter
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Chinnery, Patrick F
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Horvath, Rita
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Kohlhase, Jürgen
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Schmitt, Ina
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Wolf, Michael
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Greschus, Susanne
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 48
700 1 _ |a Maier, Wolfgang
|0 P:(DE-Juel1)159384
|b 49
700 1 _ |a Schöls, Ludger
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Nürnberg, Peter
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Zuchner, Stephan
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Klockgether, Thomas
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Ramirez, Alfredo
|0 P:(DE-HGF)0
|b 54
|e Corresponding author
700 1 _ |a Schüle, Rebecca
|0 P:(DE-HGF)0
|b 55
773 _ _ |a 10.1093/brain/awx095
|g Vol. 140, no. 6, p. 1561 - 1578
|0 PERI:(DE-600)1474117-9
|n 6
|p 1561 - 1578
|t Brain
|v 140
|y 2017
|x 1460-2156
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834448/files/Minnerop_etal_Brain.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834448
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131622
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)165199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 36
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 48
|6 P:(DE-Juel1)131631
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2015
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21