001     834511
005     20220930130126.0
024 7 _ |a 10.5194/hess-21-2509-2017
|2 doi
024 7 _ |a 1027-5606
|2 ISSN
024 7 _ |a 1607-7938
|2 ISSN
024 7 _ |a 2128/14833
|2 Handle
024 7 _ |a WOS:000401436400001
|2 WOS
024 7 _ |a altmetric:20180803
|2 altmetric
037 _ _ |a FZJ-2017-04442
082 _ _ |a 550
100 1 _ |a Baatz, Roland
|0 P:(DE-Juel1)144513
|b 0
|e Corresponding author
245 _ _ |a Evaluation of a cosmic-ray neutron sensor network for improved land surface model predictio
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1499245865_16486
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In-situ soil moisture sensors provide highly accurate but very local soil moisture measurements while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, Cosmic-Ray Neutron Sensors (CRNS) allow highly accurate soil moisture estimation at the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNS installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNS were assimilated with the local ensemble transform Kalman filter in the Community Land Model v. 4.5. Data of four, eight and nine CRNS were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map soil moisture predictions improved strongly to a root mean square error of 0.03 cm3/cm3 for the assimilation period and 0.05 cm3/cm3 for the evaluation period. Improvements were limited by the measurement error of CRNS (0.03 cm3/cm3). The positive results obtained with data assimilation of nine CRNS were confirmed by the jackknife experiments with four and eight CRNS used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content at the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Earth, Environment and Cultural Heritage
|0 V:(DE-MLZ)GC-170-2016
|2 V:(DE-HGF)
|x 0
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 1
700 1 _ |a Han, Xujun
|0 0000-0002-8290-9837
|b 2
700 1 _ |a Hoar, Tim
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 4
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
|u fzj
773 _ _ |a 10.5194/hess-21-2509-2017
|g Vol. 21, no. 5, p. 2509 - 2530
|0 PERI:(DE-600)2100610-6
|n 5
|p 2509 - 2530
|t Hydrology and earth system sciences
|v 21
|y 2017
|x 1607-7938
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834511/files/Paper.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834511/files/Paper.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834511/files/Paper.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834511/files/Paper.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834511/files/Paper.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834511/files/Paper.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834511
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129440
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HYDROL EARTH SYST SC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21