000834516 001__ 834516
000834516 005__ 20220930130126.0
000834516 0247_ $$2doi$$a10.5194/acp-17-8045-2017
000834516 0247_ $$2ISSN$$a1680-7316
000834516 0247_ $$2ISSN$$a1680-7324
000834516 0247_ $$2Handle$$a2128/14835
000834516 0247_ $$2WOS$$aWOS:000404773700002
000834516 0247_ $$2altmetric$$aaltmetric:21503074
000834516 037__ $$aFZJ-2017-04447
000834516 082__ $$a550
000834516 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
000834516 245__ $$aIntercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
000834516 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000834516 3367_ $$2DRIVER$$aarticle
000834516 3367_ $$2DataCite$$aOutput Types/Journal article
000834516 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499325296_15390
000834516 3367_ $$2BibTeX$$aARTICLE
000834516 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834516 3367_ $$00$$2EndNote$$aJournal Article
000834516 520__ $$aIn this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17–18.5 km and latitudes of 60–85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5–1.4 K and a warm bias of 0.4–2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9–2.3 m s−1 and a bias below ±0.5 m s−1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15–60 % for temperature and 30–60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4–12 % and error growth rates of 60–170 km day−1 for 15-day trajectories. Dispersion simulations revealed some difficulties with the representation of subgrid-scale wind fluctuations in MPTRAC, as the spread of air parcels simulated with different analyses was not consistent. However, although case studies suggest that the accuracy of trajectory calculations is influenced by meteorological complexity, diffusion generally does not contribute significantly to transport deviations in our analysis. Overall, evaluation results are satisfactory and compare well to earlier studies using superpressure balloon observations.
000834516 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000834516 588__ $$aDataset connected to CrossRef
000834516 7001_ $$0P:(DE-HGF)0$$aHertzog, Albert$$b1
000834516 7001_ $$0P:(DE-Juel1)151377$$aRössler, Thomas$$b2
000834516 7001_ $$0P:(DE-Juel1)3709$$aStein, Olaf$$b3
000834516 7001_ $$0P:(DE-Juel1)169305$$aWu, Xue$$b4
000834516 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-17-8045-2017$$gVol. 17, no. 13, p. 8045 - 8061$$n13$$p8045 - 8061$$tAtmospheric chemistry and physics$$v17$$x1680-7324$$y2017
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.pdf$$yOpenAccess
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.gif?subformat=icon$$xicon$$yOpenAccess
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834516 8564_ $$uhttps://juser.fz-juelich.de/record/834516/files/acp-17-8045-2017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834516 8767_ $$8Helmholtz-PUC-2017-44$$92017-10-04$$d2017-10-04$$eAPC$$jZahlung erfolgt$$pacp-2017-71
000834516 909CO $$ooai:juser.fz-juelich.de:834516$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000834516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
000834516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151377$$aForschungszentrum Jülich$$b2$$kFZJ
000834516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3709$$aForschungszentrum Jülich$$b3$$kFZJ
000834516 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169305$$aForschungszentrum Jülich$$b4$$kFZJ
000834516 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000834516 9141_ $$y2017
000834516 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834516 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000834516 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834516 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2015
000834516 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000834516 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000834516 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834516 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834516 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834516 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834516 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2015
000834516 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834516 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834516 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834516 920__ $$lyes
000834516 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000834516 9801_ $$aFullTexts
000834516 980__ $$ajournal
000834516 980__ $$aVDB
000834516 980__ $$aUNRESTRICTED
000834516 980__ $$aI:(DE-Juel1)JSC-20090406
000834516 980__ $$aAPC