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Generating and updating probabilistic models of the environment is a fundamental modus operandi of the human brain. Although

crucial for various cognitive functions, the neural mechanisms of these inference processes remain to be elucidated. Here, we show the

causal involvement of the right temporoparietal junction (rTPJ) in updating probabilistic beliefs and we provide new insights into the

chronometry of the process by combining online transcranial magnetic stimulation (TMS) with computational modeling of behavioral

responses. Female and male participants performed a modified location-cueing paradigm, where false information about the percentage

of cue validity (%CV) was provided in half of the experimental blocks to prompt updating of prior expectations. Online double-pulse TMS

over rTPJ 300 ms (but not 50 ms) after target appearance selectively decreased participants’ updating of false prior beliefs concerning

%CV, reflected in a decreased learning rate of a Rescorla–Wagner model. Online TMS over rTPJ also impacted on participants’ explicit

beliefs, causing them to overestimate %CV. These results confirm the involvement of rTPJ in updating of probabilistic beliefs, thereby

advancing our understanding of this area’s function during cognitive processing.
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Introduction
The right temporoparietal junction (rTPJ) responds to task-
relevant stimuli, particularly when unexpected. Therefore, in the
domain of attention, the main theoretical framework considers
rTPJ as part of the ventral attentional system, with the specific
role of reorienting attention toward upcoming stimuli, acting as a
kind of “circuit-breaker” over top-down attention sustained by

the dorsal system (Corbetta and Shulman, 2002; Corbetta et al.,
2008).

However, the role of rTPJ is particularly controversial and
debated, as its activation is not restricted to the attentional do-
main. rTPJ has been shown to be involved in theory of mind and
empathy (Decety and Lamm, 2007; Mitchell, 2008; Graziano and
Kastner, 2011), as well as body representation and body aware-
ness (Blanke et al., 2005; Tsakiris et al., 2008). The “contextual
updating” hypothesis (Geng and Vossel, 2013) offers a unifying
framework to interpret such broad involvement of the rTPJ
across diverse cognitive domains. Contextual updating is partic-
ularly important when unexpected stimuli occur; therefore, this
hypothesis proposes that the rTPJ is responsible for updating
internal models of the current behavioral context to the aim of
optimizing appropriate responses.

To this end, a precise characterization of the timing of the
rTPJ response after target appearance is central: if rTPJ acts as a
“circuit-breaker” over the dorsal system, its activation should
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Significance Statement

Contemporary views propose that the brain maintains probabilistic models of the world to minimize surprise about sensory

inputs. Here, we provide evidence that the right temporoparietal junction (rTPJ) is causally involved in this process. Because

neuroimaging has suggested that rTPJ is implicated in divergent cognitive domains, the demonstration of an involvement in

updating internal models provides a novel unifying explanation for these findings. We used computational modeling to charac-

terize how participants change their beliefs after new observations. By interfering with rTPJ activity through online transcranial

magnetic stimulation, we showed that participants were less able to update prior beliefs with TMS delivered at 300 ms after target

onset.
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occur in an early time-window of target processing. However, if
rTPJ is involved in contextual updating, its response should oc-
cur in a later time-window, as updating should occur after the
initiation of attentional reorienting. More specifically, because
ERP studies have linked contextual updating to the P300 compo-
nent (Polich, 2007; Kolossa et al., 2015), we expected an involve-
ment of rTPJ from 300 ms onwards.

Online transcranial magnetic stimulation (TMS) is a tech-
nique that allows to address this question because of both its
temporal precision and its causal role in interfering with the ac-
tivity of a circumscribed brain region. Online TMS applied to the
angular gyrus (i.e., a region adjacent to rTPJ) revealed that the
processing of invalidly cued targets could be impaired in two
distinct time windows, from 90 to 120 ms and from 210 to 240 ms
after target onset (Chambers et al., 2004).

Here, we used online double-pulse TMS to directly test the
timing and causal role of the rTPJ response for contextual updat-
ing after the trialwise observation of cue-target outcomes. Partic-
ipants performed a location-cueing paradigm (Posner, 1980),
which required updating of prior expectations concerning the
validity of the spatial cue for predicting the target’s location. In
spatial cueing tasks, behavioral responses (Vossel et al., 2014) and
rTPJ activity (Vossel et al., 2015; Dombert et al., 2016) are highly
sensitive to changes in the probability with which the cue predicts
the target location, and this inference process has been described
using computational learning models. In the present study, trial-
by-trial learning of cue-target contingencies, and hence belief
updating, was assessed by estimating the learning rate of a
Rescorla–Wagner model (Rescorla and Wagner, 1972) on the
basis of response speed (RS; inverse reaction time [RT]). In each
experimental block, prior probabilistic beliefs were manipulated
providing either true or false explicit information about the per-
centage of cue validity (%CV). We hypothesized that higher
learning rates should be observed in blocks with false prior infor-
mation. Moreover, by interfering with neural activity of the rTPJ
with TMS applied 300 –500 ms after target onset, we expected to
impair contextual updating in false %CV blocks, without impair-
ing the overall performance or reorienting of spatial attention
toward invalidly cued targets. More specifically, we predicted that
late TMS over rTPJ would decrease the Rescorla–Wagner learn-
ing rate, especially in the false %CV blocks, where contextual
updating is required. If rTPJ is also involved in early circuit break-
ing and attentional reorienting, TMS in an earlier time window
(50 –250 ms after target appearance) should modulate the RS
difference between invalid and valid trials, regardless of the cur-
rent probabilistic context.

Materials and Methods
Experimental design and statistical analysis. Twenty-one healthy volun-
teers participated in the study. They had normal or corrected-to-normal
vision, no past or present neurological or psychiatric condition, and they
were naive to the purpose of the experiment. All participants but one
were right-handed, as assessed with the Edinburgh Handedness Inven-
tory (Oldfield, 1971). One participant was ambidextrous with a laterality
quotient of 40 (i.e., on the boundary to right-handedness). They all gave
written informed consent. The study had been approved by the ethics
committee of the German Psychological Society and was performed in
accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

After data acquisition, 3 participants had to be excluded from further
analysis: 2 due to bad task performance (�2 SDs below the mean accu-
racy of all participants) and 1 for a technical problem with the recording
of the manual responses. Therefore, the final sample comprised 18 par-

ticipants (11 females; age range: 18 –33 years; mean age: 24.4 years; 17
right-handed).

We used a location-cueing paradigm with central cueing (Posner,
1980) (Fig. 1). Stimuli were presented on a 15.6 inch monitor (spatial
resolution 1024 � 768 pixels, refresh rate 60 Hz) with a viewing distance
of 90 cm. A central diamond was presented on a gray background for the
total duration of the task, serving as a fixation point. On each trial, a
triangle appeared for 400 ms behind the fixation diamond creating an
arrowhead pointing to the left or to the right to indicate the hemifield in
which the target would appear, therefore acting as spatial cue. After an
800 ms stimulus onset asynchrony, two diamonds appeared for 350 ms
on the left or right side of the central diamond (6.6° eccentric in each
visual field). The target diamond was missing a fragment in its upper or
lower part. Participants were instructed to press a button with the index
or middle finger of their right hand (i.e., ipsilateral to the TMS stimulated
hemisphere) to indicate whether the upper or lower fragment of the
target was missing. The response mapping was counterbalanced across
participants. The intertrial interval was 2000 ms (Fig. 1a).

In each session, two runs of eight experimental blocks were presented
to the participants. %CV was manipulated between blocks but was kept
constant within each block. %CV within each block amounted to �90%
(87.5%), �70% (71%), �30% (29%), or �10% (12.5%), respectively. In
the 30% and 10% CV blocks, the cue was counter-predictive, as the
majority of trials was invalid. As the %CV ranged from highly predictive
(e.g., �90%) to highly counter-predictive (e.g., �10%) in the present
task, valid and invalid trials are, on average, not necessarily associated
with higher and lower RSs, respectively, as in a traditional Posner task.
From the structure of the task, no overall mean differences should be
detected between valid and invalid trials when looking at all trials, and if
so, these differences can be attributed to a general tendency to follow the
cue even when it is not predictive (Eimer, 1997). The %CV was explicitly
reported to the participants at the beginning of each block. However, in
half of the blocks (i.e., 4 blocks), the provided information was false,
thereby creating blocks in which the prior expectation of the %CV was
incorrect. In these false blocks, the expected %CV was inverted with
respect to the true %CV (e.g., the expected %CV was �30%, but the
actual %CV was �70%).

Participants were aware that, in some blocks, false %CV information
would be provided, but they were not informed about the number of
blocks or about the difference between the false and true %CV. There-
fore, they were instructed to use the cue according to how much they
“trust” it and to estimate the true %CV. Indeed, participants learned the
actual cue-target contingencies, as reflected in the modulation of the
validity effect (RT difference between invalid and valid trials) by %CV in
the separate blocks (Fig. 1b). At the end of each block, participants were
asked to report their explicit belief about the true %CV, using an interval
scale ranging from 10% to 90% (in 10% steps). Each block comprised 48
trials resulting in a total of 768 trials for each session (384 trials per run).
Breaks were possible at the end of each block, and a longer break was
provided between the two runs. RTs and accuracy were recorded.

Each participant completed a short practice session at the beginning of
each experimental session, divided into two short runs. The first run
consisted of 48 trials with true 80% CV. The second run comprised three
blocks of 48 trials each: with two true blocks (true 80% CV) and one false
block (false 80% [true 20%] CV]).

Each participant was presented with the same sequence of trials and
the same sequence of blocks within each run. This is a standard proce-
dure in computational studies of learning processes that require infer-
ence on conditional probabilities in time series. A single experimental
session lasted �1 h 30 min to 2 h.

T1-weighted structural MRI scans for each participant were used to
perform neuronavigated TMS over the rTPJ (MNI coordinate: x � 56,
y � �44, z � 12; Fig. 1c). The coordinate was chosen from the fMRI
study of Vossel et al. (2015), as local maximum for the parametric mod-
ulation effect for probability-dependent attention. The coordinate was
back-normalized from the MNI template to the single subject’s brain,
using the inverse normalization parameters from the normalization of
each participant’s brain to the MNI template. The anatomical localiza-
tion of the stimulation site, located in the posterior part of the superior
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temporal gyrus, was then checked visually in the single subjects’ brains
and adjusted in case the normalization located the coordinate in an an-
atomically different region (n � 9 subjects; mean adjustment � 4 � 1.4
mm).

TMS-coil placement was guided and continuously monitored through-
out the whole experimental session via a neuronavigation system (Brain-
sight2, Rogue Research). A Magstim SuperRapid stimulator (Magstim)
equipped with a 70 mm figure-of-eight coil was used to apply double-
pulse stimulation over the rTPJ. Two TMS pulses were delivered with an
interstimulus interval of 100 ms after 50 ms or after 300 ms from target
onset.

The stimulation intensity was adjusted for each participant by incre-
mentally increasing it, starting from 30% of the stimulator output in
increments of 3% up to a maximum of 50%. If participants reported
discomfort or muscle twitches at a given intensity, the stimulation was
decreased in steps of 1% to reach the maximum stimulation intensity

possible without creating discomfort (for a similar procedure, see Aza-
ñón et al., 2010). The mean stimulation intensity was 38% (�6%, SD).
This intensity was kept constant between the two sessions of the same
participant, unless discomfort or muscle twitching was reported during
the preparation for the second session. With these procedures, partici-
pants reported no discomfort or adverse effects during TMS in the task.
Results from a pilot study performed on 6 participants showed that this
procedure led to intensities between 70% and 87% of the resting motor
threshold (78 � 6%, mean � SD).

During the double-pulse TMS stimulation, the coil was held tangential
to the scalp, with the handle pointing backward. Participants were pro-
vided with earplugs to reduce the noise produced by the stimulating coil.
In the sham condition, the coil was held perpendicularly to the surface of
the scalp over the same target position, to mimic the noise and the me-
chanical vibration of TMS without actually stimulating brain tissue. Dur-
ing the whole experimental session, an additional ineffective TMS coil

Figure 1. Experimental paradigm and illustration of the modeling approach. a, Timeline of the experimental paradigm for a validly cued trial. At the beginning of each block, the %CV (either true

or false) was shown. This value was used as prior before the observation of the first trial in the modeling approach. On each trial, participants indicated whether the upper or lower corner of the target

was missing. Central fixation was maintained throughout the experiment. Double-pulse online TMS (with 100 ms interstimulus interval) was delivered in every trial, either at 300 ms or at 50 ms after

target appearance, in different sessions. Both active TMS and sham stimulation were performed, in two different runs, in each session. b, Validity effects (mean � SEM) for each true and false %CV

block in the pooled sham condition. Participants were able to use the cue and to estimate the true cue-target contingencies, as shown by the linear pattern of the data. White circles indicate

single-subjects data. c, The MNI coordinate of the rTPJ where TMS was applied is shown in light blue (x � 56, y � �44, z � 12) in a standard brain, together with the fMRI cluster (blue) for the

parametric modulation effect for probability-dependent attention found by Vossel et al. (2015). d, Example of one participant’s trial-by-trial changes in the probability estimate that the cue will be

valid (P (t )) as derived from the learning model in a block with a false 90% CV prior. Dots indicate valid trials (outcome � 1) and invalid trials (outcome � 0) in this experimental block.
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was placed over the left hemisphere in the analogous location of the
stimulating coil (tilted perpendicularly to the surface of the scalp). This
was done to prevent that the sound of the TMS stimulation served as an
exogenous cue, as location-cueing paradigms can be sensible to lateral-
ized auditory stimulation (Chica et al., 2011). Therefore, the ineffective
coil on the left side was locked to the timing of the right-side stimulation
and set at the same intensity of the actual stimulation.

In a within-subject design, participants completed four runs of the
experimental task, distributed over 2 d. The experiment consisted of two
sessions with two different timings of the TMS and sham stimulation.
The sessions were performed on 2 different days (intersession interval:
1– 8 d) at the same daytime. The run order and the association with the
TMS protocol were counterbalanced across participants. In each of the
two sessions, one run was performed with active TMS and one run with
sham stimulation. Only one timing was tested per session (either 300 or
50 ms after target onset, both for TMS and sham) and the second timing
was tested in the second session.

RS (1/RT) was assessed for each trial. RSs were used because, in
contrast to RTs, they are more normally distributed (Carpenter and
Williams, 1995; Brodersen et al., 2008). Anticipations (RT � 100 ms),
misses, and incorrect responses were excluded from the analyses of RSs.

A Rescorla–Wagner model was applied to trialwise RSs in the different
blocks, to quantify belief updating concerning %CV in true and false
blocks. The choice of a Rescorla–Wagner model, instead of the hierar-
chical Bayesian model used in previous studies (Vossel et al., 2014, 2015),
was motivated by the different structure of the task and the substantially
smaller number of trials entering the modeling. In particular, we used
short separate blocks (due to the technical and practical constraints im-
posed by the use of online TMS), which were modeled independently
instead of one long continuous sequence with hidden changes in %CV as
in some of the previous work. Here, we used the explicit prior informa-
tion concerning %CV provided to the subjects before each block as the
prior mean, but we also allowed the model to adjust this starting value to
the observed data. Although the Rescorla–Wagner model is a heuristic
model, the learning rate has been found to be significantly correlated
with the parameter governing updating of cue validity in a hierarchical
Bayesian model (Vossel et al., 2014). In both types of models, updating is
determined by the weighting of prediction errors (the discrepancy be-
tween observed and predicted outcomes) by a learning rate. Hierarchical
Bayesian models have been proven particularly useful in volatile environ-
ments where cue-target contingencies change within a sequence of sev-
eral hundreds of trials, and where continuous changes in beliefs about the
volatility of the cue validity could be additionally captured. However, this
is not required in our short blocks with constant %CV. Moreover, it
should be noted that we modeled each single block separately, so that any
changes in learning across blocks, as well as the hypothesized difference
in the learning rates for true and false blocks in the sham condition, are
accounted for by our modeling approach.

According to the Rescorla–Wagner model, the update of the belief that
the cue will be valid in a given trial is the product of a learning rate � and
the prediction error � (t ) (i.e., the difference between the observed and the
predicted outcome in the respective trial t).

The new revised prediction after observation of the trial t, P (t ), is then
given by the sum of the prediction from the previous trial and the prod-
uct of learning rate and prediction error as follows:

P	t
 � P	t�1
 � ��	t


Thus, the learning rate � determines the extent to which prediction
errors may change the subject’s belief from trial to trial. At the same time,
algebraic manipulation of the above formula reveals that the learning rate
� dictates the extent to which past events influence the subject’s predic-
tion because it determines the steepness of the exponential decay of the
influence of preceding trials (Rushworth and Behrens, 2008).

Single-trial RSs were used to estimate the learning rate � in each ex-
perimental block (Fig. 1d). The observation or response model, which
was used to map from the subject’s belief about cue validity to observed
responses (RSs), assumed a linear relationship between RS (t ) and the
prediction before the observation of the outcome of the trial P (t �1) (for
a similar procedure, see Vossel et al., 2014) as follows:

RS	t
 � � �1_valid � �2P	t�1
 for valid trials

�1_invalid � �2	1 � P	t�1

 for invalid trials

�1_valid, �1_invalid, and �2 are additional subject-specific parameters that are
estimated from the data. Whereas �1_valid and �1_invalid determine the
constants of the linear equation (i.e., the overall levels of RSs), �2 param-
etrizes the slope of the affine function (i.e., the strength of the increase in
RS with increased estimated cue validity P (t �1)). The learning rate �, the
starting values P (0), and the three parameters from the observation model
were estimated from trialwise RSs using variational Bayes as implemented in
the HGF toolbox (http://www.translationalneuromodeling.org/tapas/)
running on MATLAB (R2014a, The MathWorks). Variational Bayes op-
timizes the (negative) free-energy F as a lower bound on the log evidence,
such that maximizing F minimizes the Kullback–Leibler divergence be-
tween exact and approximate posterior distributions or, equivalently, the
surprise about the inputs encountered (for details, see Friston et al.,
2007).

To test for the appropriateness of the Rescorla–Wagner model, we
formally compared our model with an alternative model with no learning
(� � 0; i.e., only RS for valid and invalid trials is estimated).

In a second analysis, we tested the possibility that, in the blocks with
false priors, participants directly switched to the inverse probability after
a couple of observations rather than gradually learned the probability.
Here, we formally compared the Rescorla–Wagner model with two alter-
native models. In these two alternative models, switches from the prior to
the inverse probability would occur after the first quarter (12) or after
half (24) of the 48 trials in one block.

For both control analyses, the log-model evidences resulting from the
variational Bayesian model inversion of the competing models were
compared using random-effects Bayesian Model Selection (BMS)
(Stephan et al., 2009) for all blocks in the first comparison and for false
blocks only in the second comparison, and separately for the sham,
TMS300, and TMS50 conditions. Protected exceedance probabilities and
the Dirichlet parameter estimates (representing the effective number of
subjects in which a given model generated the observed data) of the
competing models are reported. The protected exceedance probability
(Rigoux et al., 2014) uses the Bayesian omnibus risk to compute a Bayes-
ian model average of the exceedance probability, that is, the estimation of
the likelihood of a particular model being the best compared with any
other model, given the data. Importantly, random-effects BMS treats the
model itself as being selected probabilistically by each subject in the
population, enabling group-level inference while accounting for interin-
dividual differences (e.g., the optimal model can vary across subjects).

The learning rate � was averaged separately for the blocks with true
and false prior information concerning %CV and tested for normality
(skewness and kurtosis within �2) (George and Mallery, 2010). For the
group-level analyses, we first compared the two sham conditions to in-
vestigate putative differences caused by the sound of the TMS at two
different timings. Therefore, a within-subject ANOVA with the factors
timing (300 ms, 50 ms) and prior (true, false) was performed. No main
effect of timing or significant interaction with timing was present. There-
fore, the two sham conditions were pooled together in the analysis
presented in Results, so that the learning rates were analyzed with a
within-subject ANOVA with the factors stimulation (sham, TMS300,
TMS50) and prior (true, false). All group-level analyses were performed
with SPSS (SPSS Statistics for Windows, version 22.0, IBM). Results from
these analyses are reported at a significance level of p � 0.05 after Green-
house–Geisser correction. Paired-sample or one-sample t tests (with
Bonferroni correction) were computed to interpret interaction effects. In
addition, Bayesian paired-sample or one-sample t tests (nondirectional,
Cauchy prior � 0.707) were computed in JASP (version 0.8.1.1) and
Bayes factors are reported (B10 for all comparisons and B01 in those with
B10 � 3). The Bayes factor B10 reflects the evidence for H1 (i.e., the data
from the two conditions are different) compared with H0 (i.e., the data
from the two conditions are not different). B01 reflects the evidence in
favor of the alternative hypothesis H0. Bayes factors �3, �10, and �30
indicate moderate, strong, or very strong evidence for a difference,
respectively. Bayes factors between 1 and 3 indicate inconclusive
evidence.
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Because two conditions showed mild violations from normality, we
also used nonparametric Wilcoxon tests as control analyses. The results
of the ANOVA were confirmed by the nonparametric tests; therefore,
only the former will be presented.

In addition to the analysis with the pooled sham conditions, we ran an
analysis in which the � values of each sham condition were subtracted
from the respective TMS condition (TMS300-SHAM300 and TMS50-
SHAM50). These differences were analyzed with a within-subject ANOVA
with the factors stimulation (TMS300-SHAM300, TMS50-SHAM50) and
prior (true, false). One condition showed a mild violation from normal-
ity, so we added nonparametric Wilcoxon tests as control analyses. The
results of the ANOVA were confirmed by the nonparametric tests; there-
fore, only the former will be presented.

As a further control analysis, we ran a within-subject ANOVA with
the factors stimulation (sham, TMS300, TMS50), prior (true, false), and
block (high difference, 90%, 10%; low difference, 70%, 30%) on � values.
� values in true and false 90% and 10% blocks and � values in true and
false 70% and 30% blocks were averaged together.

Mean scores of explicit evaluation of %CV, as given by the participants
at the end of each block, were analyzed with a within-subject ANOVA
with the factors stimulation (sham, TMS300, TMS50) and prior (true,
false). Two conditions showed mild violations from normality, so we
added nonparametric Wilcoxon tests as control analyses. The results of
the ANOVA were confirmed by the nonparametric tests; therefore,
only the former will be presented. An additional stimulation (TMS300-
SHAM300, TMS50-SHAM50) � prior (true, false) ANOVA was per-
formed using the differences between the TMS and sham condition in
each timing.

Mean RSs and accuracy scores expressed in percentage of correct re-
sponses were used in two additional within-subject ANOVAs with the
factors stimulation (sham, TMS300, TMS50), prior (true, false), and
validity (valid, invalid). There were no deviations from normality for
the RS data. An additional stimulation (TMS300-SHAM300, TMS50-
SHAM50) � prior (true, false) ANOVA was performed using the differ-
ences between the TMS and sham condition in each timing.

Eye movement data recording. Eye movements were monitored with an
Eye-Link 1000 (SR Research) eye-tracking system with a sampling rate of
500 Hz. At the start of the experiment, a calibration and validation of
the eye-tracker were performed (validation error �1° of visual angle).
Analysis of the data was performed using MATLAB (R2014a, The
MathWorks). The critical period analyzed for gaze deviations from
the center was the time window between the presentation of the cue and
the target display (cue-target period). Saccades were identified as gaze
deviations from fixation �1.5° visual angle in the cue-target period, and
they were determined and expressed as a percentage score over the total
number of trials. Differences in percentage of saccades were analyzed
with a within-subject ANOVA with factors stimulation (sham, TMS300,
TMS50), prior (true, false), and validity (valid, invalid). One participant
had to be excluded from this analysis due to bad quality of the signal;
therefore, eye-movement data from 17 of the 18 participants were
analyzed.

Participants maintained fixation on average in 98.4% (�0.5%, SEM)
of the trials. Analysis of the eye-movement data with a within-subjects
ANOVA with factors stimulation (sham, TMS300, TMS50), prior (true,
false), and validity (valid, invalid) did not reveal any significant effect of
stimulation or any interaction with stimulation.

Results
TMS300-induced reduction of belief updating (learning
rate �)
Figure 2a shows the learning rate � in the sham, TMS300, and
TMS50 conditions for true and false blocks. The within-subject
ANOVA with the factors stimulation (sham, TMS300, TMS50)
and prior (true, false) on the learning rate � revealed a main effect
of prior (F(1,17) � 39.6, p � 0.000008) with higher learning rates
in false blocks, but also a significant stimulation � prior interac-
tion (F(1.88,32) � 4.15, p � 0.027; Fig. 2a). We ran paired t tests to
interpret the interaction (nine comparisons, Bonferroni-corrected

threshold p � 0.0056). We found a significant difference between
� in blocks with true and false prior both for sham (t(17) � �6.4,
p � 0.000006, B10 � 3354) and for TMS50 (t(17) � 4.7, p �
0.0002, B10 � 152), with higher learning in false blocks, but no
significant difference between false and true blocks for TMS300
(t(17) � �0.76, p � 0.46, B10 � 0.31, B01 � 3.2). Moreover, � in
false blocks in TMS300 was significantly different from sham
(t(17) � �3.8, p � 0.0014, B10 � 27), with reduced learning for
TMS300. In addition, we found a trend toward significance be-
tween � in the TMS300 and TMS50 in false blocks (t(17) � �2.67,
p � 0.016, B10 � 3.5), again with slower learning for TMS300.

The analysis on the differences between � in each TMS and
sham condition using a within-subject ANOVA with the factors
stimulation (TMS300-SHAM300, TMS50-SHAM50) and prior
(true, false) revealed a significant stimulation � prior interaction
(F(1,17) � 4.8, p � 0.043; Fig. 2b). Post hoc paired t tests (four
comparisons, Bonferroni-corrected threshold p � 0.0125) showed a
significant difference between � in blocks with true and false
prior for TMS300-SHAM300 (t(17) � �2.9, p � 0.01, B10 � 5.3),
with a relative increase in � with TMS compared with sham in
blocks with true prior and a relative decrease in � with TMS
compared with sham in blocks with false prior. We also tested for
the deviance of these differences from zero with one-sample t
tests. Here, the only effect that was different from zero was in the
TMS300-SHAM300 in blocks with false prior (t(17) � �2.2, p �
0.04, B10 � 1.7, B01 � 0.6), with a TMS-induced decrease in �;
however, this effect did not pass the threshold for Bonferroni
correction (two comparisons, threshold p � 0.025).

Although the critical test for our hypothesis was the modula-
tion of the learning rate � as described above, we wanted to find
signatures of this TMS effect in a model-free analysis. To this aim,
we ran single-subject linear regressions on RS with the number of
repetitions of the same (most frequent) trial type (valid trials in
the predictive blocks and invalid trials in the counter-predictive
blocks, respectively), to test whether the acceleration of RS with
repeating trials was present in all stimulation conditions. If
participants show fast learning, RS should increase with an in-
creasing number of repetitions of the same trial type, and the
acceleration should be captured by the � parameter (slope) of this
regression. The within-subject ANOVA with the factors stimula-
tion (sham, TMS300, TMS50) and prior (true, false) revealed a
trend toward significance for the stimulation � prior interaction
(F(1.5,25.5) � 3, p � 0.08; Fig. 2c). We ran paired t tests to
interpret the trend found in the interaction (nine compari-
sons, Bonferroni-corrected threshold p � 0.0056). We found a
significant difference between � in blocks with true and false
prior for TMS300 (t(17) � 3.5, p � 0.0027, B10 � 16), with higher
acceleration for the blocks with true prior. The same comparisons
for sham (t(17) � �0.23, p � 0.82, B10 � 0.2, B01 � 4) and for
TMS50 (t(17) � 0.07, p � 0.94, B10 � 0.2, B01 � 4.1) were not
significant. In addition, we found a trend toward significance
between � in the TMS300 and sham in false blocks (t(17) � 2.7, p �
0.015, B10 � 3.8), with lower acceleration for TMS300, and be-
tween � in the TMS300 and TMS50 in false blocks (t(17) � 2.16,
p � 0.046, B10 � 1.5, B01 � 0.6), with lower acceleration for
TMS300.

In what follows, we present additional evidence for the validity
of our modeling approach. The mean adjustment (averaged over
all CV blocks) from the prior value (e.g., from 90% CV) in the
perceptual model was �0.02% (�3.04% SD) for sham, 2.04%
(�6.7%) for TMS300, and �1.21% (�5.61%) for TMS50.

Table 1 shows the values of the remaining parameters of the
response model, which determine the constant of the linear equa-
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tion �1 (i.e., the overall levels of response speeds in valid and
invalid trials) and the slope of the affine function �2 (i.e., the
strength of the increase in response speed with increased precision-
dependent attention).

On the basis of these response model parameters and the
subject- and session-specific values of � and P (0), we calculated
observed and predicted responses in the different experimental
blocks and stimulation sessions. Figure 3 shows that the observed

Figure 2. Belief updating results. a, Learning rate � for all stimulation (TMS300, TMS50, sham) and prior (true, false) conditions. Error bars indicate SEM. White circles indicate single-subjects

data. b, Mean deviations from baseline (TMS300-SHAM300 and TMS50-SHAM50), indicating time-specific effects. Dotted lines indicate single-subjects data. c, Mean � values indicating the

acceleration of RSs for increasing number of consecutive repetitions of the same type of trials for blocks with true and false prior in all stimulation conditions. White circles indicate single-subjects

data. ***p � 0.0001. **p � 0.001. *p � 0.05. (*)p � 0.05, not passing the Bonferroni-corrected threshold for multiple comparisons.

Table 1. Mean (�SEM) values for the parameters of the response model

True prior blocks False prior blocks

Sham TMS300 TMS50 Sham TMS300 TMS50

�1_valid 1.8E-03 (�9.23E-05) 1.76E-03 (�9.84E-05) 1.83E-03 (�9.93E-05) 1.79E-03 (�9.3E-05) 1.83E-03 (�9.57E-05) 1.81E-03 (�9.92E-05)
�1_invalid 1.74E-03 (�9.76E-05) 1.75E-03 (�9.55E-05) 1.75E-03 (�9.56E-05) 1.77E-03 (�9.44E-05) 1.78E-03 (�9.39E-05) 1.74E-03 (�9.68E-05)
�2 4.83E-04 (�1.59E-05) 5.26E-04 (�2.35E-05) 4.7E-04 (�2.51E-05) 4.33E-04 (�1.6E-05) 4.36E-04 (�2.57E-05) 4.7E-04 (�2.51E-05)

5424 • J. Neurosci., May 31, 2017 • 37(22):5419 –5428 Mengotti et al. • TPJ and Belief Updating



RS pattern closely matched the RS pattern predicted by the learn-
ing model in all three stimulation conditions, corroborating the
validity of our modeling approach.

Moreover, we compared our model with a null model with no
learning (� � 0). Random-effects BMS showed that the Rescorla–

Wagner learning model had higher model evidence than the no
learning model in all three stimulation conditions (Table 2).

In an additional analysis, we tested for the possibility that our
probability manipulation of using inverse probabilities in false
blocks was too obvious and that the subjects would merely switch
to the inverse probability after having observed a couple of trials.
Therefore, we formally compared the log-model evidence of the
learning model with two alternative models, which predicted that
participants in false blocks would directly switch after the first
quarter or after half of the trials from the expected %CV (i.e., the
prior information provided at the beginning of the blocks) to the
inverse %CV. Random-effects BMS showed that the learning
model had higher model evidence in all three stimulation condi-
tions (Table 2).

We also tested, in a further control analysis, whether the dif-
ference in � in false blocks between different stimulation condi-
tions depended on the high or low violation of the expectation
concerning %CV. In blocks with 90% or 10% CV, the violation of

Figure 3. Observed and predicted pattern of RS costs from the learning model. RS costs were calculated by subtracting RSs of invalid trials from valid trials and are shown in relation to the participants’

estimated probability that the cue will be valid in an upcoming trial P (t �1), binned in intervals of 0.2. As expected, RS costs increased with increased subjective %CV, and the pattern of observed RS costs

matched the RS costs predicted by the model on the basis of individual values for �, P (0), �1_valid, �1_invalid, and �2 in the different blocks and sessions. Error bars indicate SEM.

Table 2. Results of the BMS selectiona

Sham TMS300 TMS50

Model PXP
Dirichlet
parameter PXP

Dirichlet
parameter PXP

Dirichlet
parameter

All blocks
Learning model 0.98 17.4 0.99 17.6 1 18
No learning model 0.02 2.6 0.01 2.4 �0.001 2

Only false blocks
Learning model 0.91 13.2 0.86 12.5 0.99 15.2
Switch-half model 0.02 1.3 0.02 1.2 �0.001 1.2
Switch-quarter model 0.07 6.5 0.12 7.2 0.01 4.6

aPXP, Protected exceedance probability.
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the expectations was stronger than in 70% and 30% blocks. We
therefore ran a within-subject ANOVA with the factors stimula-
tion (sham, TMS300, TMS50), prior (true, false), and block (high
difference, 90%, 10%; low difference, 70%, 30%) on the � pa-
rameter. In addition to the previously shown effects of prior
(F(1,17) � 39.6, p � 0.000008) and stimulation � prior interac-
tion (F(1.88,32) � 4.15, p � 0.027), we found a main effect of block
(F(1,17) � 13.5, p � 0.002), with higher learning rates for high
difference blocks. However, no significant interaction between
block and stimulation or prior was found, suggesting that a
higher or lower level of violation of expectation did not impact on
our stimulation results.

TMS-induced explicit overestimation of cue validity
The within-subject ANOVA with the factors stimulation (sham,
TMS300, TMS50) and prior (true, false) on the explicit evalua-
tion of the %CV revealed a main effect of prior (F(1,17) � 17.3, p �
0.0007), with higher estimates of %CV in blocks with false prior
(57 � 1.6% CV) than in blocks with true prior (52 � 1.2% CV),
and a main effect of stimulation (F(1.7,29) � 5.9, p � 0.009; Fig. 4a).
Pairwise comparisons (three comparisons, Bonferroni-corrected
threshold p � 0.017) showed a significant difference between
TMS300 and sham (t(17) � 3.1, p � 0.007, B10 � 7.5), with higher
explicit evaluation of %CV with TMS at 300 ms. In addition, we
found a trend toward significance between TMS50 and sham (t(17) �
2.1, p � 0.048, B10 � 1.5, B01 � 0.7), with a tendency toward higher
explicit evaluation of %CV with TMS at 50 ms.

The within-subject ANOVA on the TMS-sham differences
with the factors stimulation (TMS300-SHAM300, TMS50-SHAM50)
and prior (true, false) revealed a main effect of prior (F(1,17) � 6.9,
p � 0.018), with higher explicit evaluation of %CV for blocks
with false prior, and a trend toward significance for the main
effect of stimulation (F(1,17) � 3.3, p � 0.089), with a tendency
toward increased estimates of %CV with TMS300-SHAM300
compared with TMS50-SHAM50. We also tested for the deviance
of the TMS effects from zero for the main effect of stimulation
with one-sample t tests (two comparisons, Bonferroni-corrected
threshold p � 0.025), which revealed that the only condition that

was different from baseline was in the TMS300-SHAM300 (t(17) �

2.9, p � 0.009, B10 � 5.6), with an increase in the explicit estimate
of %CV compared with baseline.

TMS-induced increase in average validity effects
We also analyzed mean condition-specific RSs to test for a TMS
effect on attentional reorienting (i.e., the validity effect: RS dif-
ference between valid and invalid trials).

The within-subject ANOVA on mean RSs with the factors
stimulation (sham, TMS300, TMS50), prior (true, false), and va-
lidity (valid, invalid) revealed a main effect of validity (F(1,17) �

32.8, p � 0.000025), with lower RSs for invalid trials, and a sig-
nificant stimulation � validity interaction (F(1.81,30.77) � 5.25,
p � 0.0035). No main effect of stimulation was found, suggesting
that there were no unspecific effects of TMS on RSs.

We ran paired t tests to interpret the effect found in the inter-
action (nine comparisons, Bonferroni-corrected threshold p �

0.0056). We found a significant difference between valid and in-
valid trials in all three stimulation conditions (p � 0.002). No
other comparison was significant (p � 0.3). Therefore, the inter-
action effect must lie in the size of RS difference between valid
and invalid trials (i.e., the validity effect) in the three stimulation
conditions. Accordingly, we calculated validity effects, subtract-
ing RSs of valid and invalid trials. Validity effects in the three
stimulation conditions were then compared with paired t tests
(three comparisons, Bonferroni-corrected threshold p � 0.017;
Fig. 4b). A significant difference was found between TMS300 and
TMS50 (t(17) � 3.55, p � 0.002, B10 � 17), with higher validity
effects for the TMS50 condition, suggesting an effect of TMS
interference on validity effects when TMS was applied at 50 ms. In
addition, we found a trend toward significance between validity
effects in the TMS50 and sham (t(17) � �2.56, p � 0.02, B10 � 2.9,
B01 � 0.3). In the present task, as half of the trials were presented
with a counter-predictive cue (�30% and �10% blocks), validity
effects theoretically should not be detected. Therefore, positive va-
lidity effects should be interpreted as resulting from a general ten-
dency to rely on the cue, even when it is not predictive.

Figure 4. Mean explicit evaluation of %CV and mean (probability-independent) validity effects. a, Explicit evaluation of the %CV for the three stimulation conditions. Error bars indicate SEM.

b, Validity effects (i.e., the tendency to rely on the cue) in the three stimulation conditions. Error bars indicate SEM. *p � 0.05. (*)p � 0.05, not passing the Bonferroni-corrected threshold for

multiple comparisons. White circles indicate single-subjects data.
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The analysis on the differences between TMS and sham with a
within-subject ANOVA with the factors stimulation (TMS300-
SHAM300, TMS50-SHAM50), prior (true, false), and validity
(valid, invalid) revealed only a significant prior � validity inter-
action (F(1,17) � 5, p � 0.039) but no effect of, or interaction with,
stimulation.

TMS effects on accuracy
Overall, the average accuracy amounted to 94% (�0.8 SEM). The
within-subject ANOVA on accuracy scores with the factors stim-
ulation (sham, TMS300, TMS50), prior (true, false), and validity
(valid, invalid) revealed a main effect of validity (F(1,17) � 32, p �
0.00003), with higher accuracy for valid (95 � 0.6%) than for
invalid (92 � 0.9%) trials. However, no significant effect of
stimulation or interaction with this factor was found, suggest-
ing that the TMS did not affect accuracy (neither after 300 nor
after 50 ms).

Discussion
In the present study, we applied online TMS to probe the causal
role of rTPJ in belief updating and to characterize the chronom-
etry of this process. As hypothesized, our data revealed that dis-
rupting rTPJ activity by applying TMS 300 ms after target
appearance selectively decreased participants’ updating of false
prior beliefs concerning %CV without affecting reorienting of
attention. Additional analyses showed that observed response
speed indeed followed the predictions of the employed learning
model, and that models with no learning or models according to
which the subject merely switched to the inverse probability level
in false prior blocks after a couple of trials had lower model
evidence than the Rescorla–Wagner model. The effect of TMS
interference over rTPJ also had an impact on the participants’
explicit beliefs concerning cue validity, although with less clear
time specificity. Moreover, TMS interference did not cause any
unspecific effects on RSs or accuracy.

Our results are consistent with previous neuroimaging evi-
dence (Vossel et al., 2015), showing that rTPJ activity is modu-
lated by violations of expectations concerning upcoming external
events. However, given the correlative nature of fMRI, the pres-
ent work, for the first time, provides evidence for a causal role of
rTPJ in probabilistic belief updating. Hence, the present findings
are consistent with, but extend, prior work. Together, neuroimaging
and TMS evidence offer a unifying interpretation of previously ob-
served rTPJ activations across multiple cognitive domains, from
theory of mind to body awareness (Blanke et al., 2005; Decety and
Lamm, 2007; Mitchell, 2008; Tsakiris et al., 2008). Indeed, all the
tasks used in these studies share the need for updating prior in-
formation with new upcoming information provided by other
individuals, external sensory stimuli, or internal body signals.
Therefore, our result, even though embedded in a spatial atten-
tion task, might not be restricted to the attentional domain only.

These novel insights about the function and chronometry of
rTPJ activity can also be linked to the ERP literature according to
which contextual updating after unexpected events is associated
with the P300 component (Polich, 2007; Kolossa et al., 2015). It
has been speculated that the neural origin of the P300 may be in
frontal and temporoparietal brain regions (Polich, 2007; Kolossa
et al., 2015). Our present data provide direct evidence for the
involvement of rTPJ in belief updating after 300 ms from target
onset, thereby supporting the hypothesis of a connection be-
tween P300 component and contextual updating.

When looking more generally on average RSs in all valid and
invalid trials, we also found an effect when interfering with rTPJ

activity, causing an increase of validity effects. This effect was more
pronounced with TMS 50 ms from target onset (compared with the
late TMS stimulation at 300 ms), but the analysis with TMS-sham
differences for the two timings did not reveal any specific differences
between TMS stimulation at 50 and at 300 ms, making it difficult to
draw any definitive conclusion from this observation.

Likewise, the effects of TMS on the subject’s explicit evalua-
tion of cue validity were not clear-cut. Here, more research is
warranted to systematically explore the relationship between pa-
rameters based upon RS and explicit ratings of probabilities.

Our present results show that the function of rTPJ is not lim-
ited to reorienting and proposes an additional novel role in up-
dating prior beliefs in a later phase of stimulus processing. This
interpretation also helps to understand why patients with right-
hemispheric parietal damage are not just impaired in reorienting
attention toward invalidly cued targets (e.g., Friedrich et al., 1998)
but also do not show speeded responses after repeated presenta-
tions of a stimulus (Shaqiri and Anderson, 2012) and have diffi-
culties to improve their task performance through feedback (Seki
et al., 1999). In addition, the suggested new role of rTPJ based
upon our current TMS and previous neuroimaging data (Vossel
et al., 2015) may explain the broad involvement of this region in
diverse cognitive domains, which require reconciling predicted
and observed input and adjusting internal models accordingly.

As far as the specificity of rTPJ for contextual updating is
concerned, we cannot exclude that additional regions are in-
volved in the updating of prior expectations. Nevertheless, the
main aim of the study, inspired by the consistent involvement of
rTPJ in modulating beliefs in spatial cueing tasks found in fMRI
studies (Vossel et al., 2015; Dombert et al., 2016), concerned the
causal involvement of this region in contextual updating together
with a characterization of the timing of the processing. The re-
sults strongly support the hypothesis of a causal role of rTPJ in
contextual updating.
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