000834564 001__ 834564
000834564 005__ 20210129230712.0
000834564 0247_ $$2doi$$a10.1038/srep17578
000834564 0247_ $$2Handle$$a2128/14844
000834564 0247_ $$2WOS$$aWOS:000365419900001
000834564 037__ $$aFZJ-2017-04492
000834564 082__ $$a000
000834564 1001_ $$0P:(DE-HGF)0$$aWei, Wei$$b0
000834564 245__ $$aControlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells
000834564 260__ $$aLondon$$bNature Publishing Group$$c2015
000834564 3367_ $$2DRIVER$$aarticle
000834564 3367_ $$2DataCite$$aOutput Types/Journal article
000834564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499405023_17028
000834564 3367_ $$2BibTeX$$aARTICLE
000834564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834564 3367_ $$00$$2EndNote$$aJournal Article
000834564 520__ $$aIn-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale.
000834564 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000834564 588__ $$aDataset connected to CrossRef
000834564 7001_ $$0P:(DE-HGF)0$$aDai, Ying$$b1$$eCorresponding author
000834564 7001_ $$0P:(DE-Juel1)159381$$aNiu, Chengwang$$b2
000834564 7001_ $$0P:(DE-HGF)0$$aHuang, Baibiao$$b3
000834564 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep17578$$gVol. 5, no. 1, p. 17578$$n1$$p17578$$tScientific reports$$v5$$x2045-2322$$y2015
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.pdf$$yOpenAccess
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.gif?subformat=icon$$xicon$$yOpenAccess
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834564 8564_ $$uhttps://juser.fz-juelich.de/record/834564/files/srep17578.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834564 909CO $$ooai:juser.fz-juelich.de:834564$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000834564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159381$$aForschungszentrum Jülich$$b2$$kFZJ
000834564 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000834564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834564 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000834564 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000834564 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000834564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000834564 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000834564 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000834564 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000834564 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834564 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834564 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834564 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834564 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834564 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000834564 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000834564 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000834564 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000834564 980__ $$ajournal
000834564 980__ $$aVDB
000834564 980__ $$aUNRESTRICTED
000834564 980__ $$aI:(DE-Juel1)IAS-1-20090406
000834564 980__ $$aI:(DE-Juel1)PGI-1-20110106
000834564 980__ $$aI:(DE-82)080009_20140620
000834564 980__ $$aI:(DE-82)080012_20140620
000834564 9801_ $$aFullTexts