000834631 001__ 834631
000834631 005__ 20240625095113.0
000834631 0247_ $$2doi$$a10.1016/j.jsamd.2017.03.001
000834631 0247_ $$2Handle$$a2128/14865
000834631 0247_ $$2WOS$$aWOS:000407868100002
000834631 037__ $$aFZJ-2017-04539
000834631 082__ $$a600
000834631 1001_ $$0P:(DE-HGF)0$$aSuku, Eda$$b0
000834631 245__ $$aMulti-scale simulations of membrane proteins: The case of bitter taste receptors
000834631 260__ $$aAmsterdam$$bElsevier$$c2017
000834631 3367_ $$2DRIVER$$aarticle
000834631 3367_ $$2DataCite$$aOutput Types/Journal article
000834631 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499669882_7961
000834631 3367_ $$2BibTeX$$aARTICLE
000834631 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834631 3367_ $$00$$2EndNote$$aJournal Article
000834631 520__ $$aHuman bitter taste receptors (hTAS2Rs) are the second largest group of chemosensory G-protein coupled receptors (25 members). hTAS2Rs are expressed in many tissues (e.g. tongue, gastrointestinal tract, respiratory system, brain, etc.), performing a variety of functions, from bitter taste perception to hormone secretion and bronchodilation. Due to the lack of experimental structural information, computations are currently the methods of choice to get insights into ligand–receptor interactions. Here we review our efforts at predicting the binding pose of agonists to hTAS2Rs, using state-of-the-art bioinformatics approaches followed by hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations. The latter method, developed by us, describes atomistically only the agonist binding region, including hydration, and it may be particularly suited to be used when bioinformatics predictions generate very low-resolution models, such as the case of hTAS2Rs. Our structural predictions of the hTAS2R38 and hTAS2R46 receptors in complex with their agonists turn out to be fully consistent with experimental mutagenesis data. In addition, they suggest a two-binding site architecture in hTAS2R46, consisting of the usual orthosteric site together with a “vestibular” site toward the extracellular space, as observed in other GPCRs. The presence of the vestibular site may help to discriminate among the wide spectrum of bitter ligands
000834631 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000834631 588__ $$aDataset connected to CrossRef
000834631 7001_ $$0P:(DE-Juel1)169808$$aFierro, Fabrizio$$b1$$ufzj
000834631 7001_ $$0P:(DE-Juel1)165199$$aGiorgetti, Alejandro$$b2$$eCorresponding author$$ufzj
000834631 7001_ $$0P:(DE-Juel1)169976$$aAlfonso-Prieto, Mercedes$$b3$$eCorresponding author
000834631 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
000834631 773__ $$0PERI:(DE-600)2856527-7$$a10.1016/j.jsamd.2017.03.001$$gVol. 2, no. 1, p. 15 - 21$$n1$$p15 - 21$$tJournal of science$$v2$$x2468-2179$$y2017
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.pdf$$yOpenAccess
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.gif?subformat=icon$$xicon$$yOpenAccess
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834631 8564_ $$uhttps://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834631 909CO $$ooai:juser.fz-juelich.de:834631$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000834631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169808$$aForschungszentrum Jülich$$b1$$kFZJ
000834631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165199$$aForschungszentrum Jülich$$b2$$kFZJ
000834631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169976$$aForschungszentrum Jülich$$b3$$kFZJ
000834631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
000834631 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000834631 9141_ $$y2017
000834631 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834631 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000834631 920__ $$lyes
000834631 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000834631 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000834631 980__ $$ajournal
000834631 980__ $$aVDB
000834631 980__ $$aUNRESTRICTED
000834631 980__ $$aI:(DE-Juel1)IAS-5-20120330
000834631 980__ $$aI:(DE-Juel1)INM-9-20140121
000834631 9801_ $$aFullTexts