001     834631
005     20240625095113.0
024 7 _ |a 10.1016/j.jsamd.2017.03.001
|2 doi
024 7 _ |a 2128/14865
|2 Handle
024 7 _ |a WOS:000407868100002
|2 WOS
037 _ _ |a FZJ-2017-04539
082 _ _ |a 600
100 1 _ |a Suku, Eda
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Multi-scale simulations of membrane proteins: The case of bitter taste receptors
260 _ _ |a Amsterdam
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1499669882_7961
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Human bitter taste receptors (hTAS2Rs) are the second largest group of chemosensory G-protein coupled receptors (25 members). hTAS2Rs are expressed in many tissues (e.g. tongue, gastrointestinal tract, respiratory system, brain, etc.), performing a variety of functions, from bitter taste perception to hormone secretion and bronchodilation. Due to the lack of experimental structural information, computations are currently the methods of choice to get insights into ligand–receptor interactions. Here we review our efforts at predicting the binding pose of agonists to hTAS2Rs, using state-of-the-art bioinformatics approaches followed by hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations. The latter method, developed by us, describes atomistically only the agonist binding region, including hydration, and it may be particularly suited to be used when bioinformatics predictions generate very low-resolution models, such as the case of hTAS2Rs. Our structural predictions of the hTAS2R38 and hTAS2R46 receptors in complex with their agonists turn out to be fully consistent with experimental mutagenesis data. In addition, they suggest a two-binding site architecture in hTAS2R46, consisting of the usual orthosteric site together with a “vestibular” site toward the extracellular space, as observed in other GPCRs. The presence of the vestibular site may help to discriminate among the wide spectrum of bitter ligands
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fierro, Fabrizio
|0 P:(DE-Juel1)169808
|b 1
|u fzj
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 3
|e Corresponding author
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 4
|u fzj
773 _ _ |a 10.1016/j.jsamd.2017.03.001
|g Vol. 2, no. 1, p. 15 - 21
|0 PERI:(DE-600)2856527-7
|n 1
|p 15 - 21
|t Journal of science
|v 2
|y 2017
|x 2468-2179
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834631/files/1-s2.0-S2468217917300242-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834631
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169808
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21