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a b s t r a c t

Human bitter taste receptors (hTAS2Rs) are the second largest group of chemosensory G-protein coupled

receptors (25 members). hTAS2Rs are expressed in many tissues (e.g. tongue, gastrointestinal tract,

respiratory system, brain, etc.), performing a variety of functions, from bitter taste perception to hormone

secretion and bronchodilation. Due to the lack of experimental structural information, computations are

currently the methods of choice to get insights into ligandereceptor interactions. Here we review our

efforts at predicting the binding pose of agonists to hTAS2Rs, using state-of-the-art bioinformatics ap-

proaches followed by hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations. The latter

method, developed by us, describes atomistically only the agonist binding region, including hydration,

and it may be particularly suited to be used when bioinformatics predictions generate very low-

resolution models, such as the case of hTAS2Rs. Our structural predictions of the hTAS2R38 and

hTAS2R46 receptors in complex with their agonists turn out to be fully consistent with experimental

mutagenesis data. In addition, they suggest a two-binding site architecture in hTAS2R46, consisting of

the usual orthosteric site together with a “vestibular” site toward the extracellular space, as observed in

other GPCRs. The presence of the vestibular site may help to discriminate among the wide spectrum of

bitter ligands.

© 2017 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The 25 human bitter taste receptors (hTAS2Rs) [1,2] constitute

the second largest group of chemosensory G-protein coupled re-

ceptors (GPCRs), in turn the largest membrane protein superfamily,

with about 850 members in humans. hTAS2Rs are found in many

different tissues of the human body [3e5]. These include the

plasma membrane of the type II taste receptor cells (from which

their name, TAS2Rs, comes from), located in the taste buds of the

tongue [1,6e8], the respiratory system [9e11], the gastrointestinal

tract [12,13] the endocrine system [13] and the brain [14]. Hence,

hTAS2Rs play different roles, ranging from perception of bitter

taste, to detection of toxins [15], to bronchodilation [16], and to

hormone secretion [17]. hTAS2Rs can recognize hundreds of

structurally diverse agonists using a combinatorial coding scheme

[18,19]. One hTAS2R is able to recognize more than one agonist

[20,21], and one agonist can be recognized by more than one

hTAS2R [20]. Understanding the details of hTAS2Rseagonists in-

teractions may provide important hints on the effect of genetic

variability on bitter taste perception, and new opportunities for
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designing more subtype-specific ligands [22,23] and novel thera-

pies against diseases related to hTAS2Rs' dysfunction, e.g. asthma

or chronic rhinosinusitis [4,5].

hTAS2Rs, as all GPCRs, are made up of seven transmembrane

helices arranged in a helix-bundle shape and connected by three

extracellular loops (ECLs) and three intracellular loops (ICLs) [24].

Agonist binding to the receptor's binding site (called orthosteric

site) facilitates conformational changes towards an “active state”.

The latter allows the activation of downstream effectors [7,25]. The

location of the orthosteric site in hTAS2Rs is similar to other re-

ceptors of the largest GPCR class, class A [26e31]. However, because

of the low sequence similarity between hTAS2Rs and the other

GPCRs, it has not been clearly established yet if hTAS2Rs belong to

class A [32e34] or class F [27,35,36] GPCRs. These proteins could

even constitute a different family [27].

At present no experimental structural information is available

for hTAS2Rs. Therefore, any attempt at understanding the hTAS2R-

agonist complexes has to rely on computational approaches. Bio-

informatics techniques, such as homology modeling [37], along

with molecular docking [38e40], could in principle provide in-

sights into agonist/antagonist binding. Unfortunately, however, the

sequence identity between bitter taste receptors and the possible

templates is extremely low (~10e17% with any of the 42 unique X-

ray structures as of February 2017 (http://blanco.biomol.uci.edu/

mpstruc/)). As a consequence, the construction of reliable align-

ments between the target sequence and the available structural

templates is challenging [41e43]. Moreover, even with a good

sequence alignment, the orientation of the side chains in the

orthosteric binding site, which is key for proteineligand in-

teractions, is not accurately modeled [44,45]. This hinders the

correct prediction of docking poses. In addition, current bioinfor-

matics and docking algorithms face at times limitations (such as the

lack of protein flexibility and hydration [46,47]), which may further

limit the power of the predictions, especially in light of the fact that

factors such as conformational dynamics [48] and water molecules

[49,50] play a crucial role for ligand binding and receptor activation.

A way to overcome these difficulties is to combine these static

computational approaches with molecular simulation techniques,

such as molecular dynamics (MD) and enhanced sampling [51e53].

These methods may explore efficiently the conformational space,

including hydration and ligandeprotein interactions. All-atom MD

has been successfully used in high quality homology models (i.e.

based on a template with sequence identity above 60%) [48,54,55];

however, it may provide far less satisfying results when the protein

structure is a homology model based on a low sequence identity

template (as it is the case for hTAS2Rs). Here, the side chains'

rotamers are poorly predicted and often their relaxation requires

longer time scales that cannot be reached with atomistic MD.

Coarse-grained (CG)-based MD can be used to sample longer

timescales [56e59], yet it cannot describe in detail the molecular

recognition events between protein and ligand. A way to overcome

these limitations is represented by the combination of the two

aforementioned techniques [60e67]. In this context, our group has

developed a hybrid “Molecular Mechanics/Coarse-Grained” (MM/

CG) method for refinement of GPCRs homology models [63,68,69].

Here, the system is modeled at two different resolutions. While

ligand, binding site residues and surrounding water molecules are

treated using an atomistic force field, the rest of the protein is

described at a CG level. A coupling scheme is then used to connect

the two regions at the boundary. This MM/CG method maintains

the atomistic resolution needed to describe correctly the pro-

teineligand interactions at the binding site, while allowing a larger

conformational sampling and a reduced computational cost

compared to an all-atom simulation. The presence of the

membrane is mimicked by introducing five repulsive walls. Two

planar walls coincide with the height of the head groups of the

membrane lipids, two hemispheric walls set a limit on the extra-

cellular and intracellular ends of the protein and the last wall fol-

lows the initial shape of the interface between protein and

membrane [70e72].

The accuracyof theMM/CGmethod in reproducingbindingposes

andproteinfluctuationswasestablished inourearlywork [68].Here,

wewill presentmore recent predictions forwidely studied hTAS2Rs,

which were successfully validated against extensive mutagenesis

data [73e75]. Specifically, we investigate hTAS2R46 [76], a promis-

cuousbitter taste receptor [20,73,77] that candetectbittermolecules

belonging to several different chemical classes, and hTAS2R38

[74,75], a receptor that recognizes agonists containing an isothio-

cyanate or thiourea group [20,77,78]. Given their different receptive

range, these two receptors constitute excellent contrasting test cases

to assess the applicability of the MM/CG methodology to study

ligand binding in human bitter taste receptors.

2. Materials and methods

Our web-server GOMoDO [79] performs automatically both the

homology modeling and molecular docking steps, by combining

state-of-the-art bioinformatics tools for GPCRs. In particular,

GOMoDO uses the profileeprofile HMM algorithm (for database

search and target-template alignment) and the MODELLER pro-

gram [80] (for protein homology model construction), followed by

information-driven flexible docking of ligands through the

HADDOCK program [81]. This protocol was used to produce the

initial model of hTAS2R46 in complex with one of its agonists,

strychnine, as well as the models of hTAS2R38 in complex with its

two agonists, namely propylthiouracil (PROP) and phenylthiocar-

bamide (PTC). Specifically, the MODELLER algorithm [80] was used

to generate 200 models of hTAS2R46 and hTAS2R38, applying a

single-template or multiple-template approach, respectively

[74e76]. Then, a clustering analysis was performed to identify

“representative” receptor models, using as criteria both the MOD-

ELLER quality scores and available experimental site-directed

mutagenesis data. In the case of hTAS2R46, one single model was

taken as representative, whereas for hTAS2R38 two models were

selected, which mainly differ in the conformation of the ECL2. The

agonists, strychnine for hTAS2R46 and PROP and PTC for hTAS2R38,

were docked into the modeled receptor structures using HADDOCK

[81]. Information about the putative binding residues was used to

drive the docking. For hTAS2R46 the putative binding residues

were predicted using FPOCKET [82], whereas for hTAS2R38, they

were selected based on previous bioinformatics and site-directed

mutagenesis studies [74]. In the docking protocol, first 1000

structures were generated in the rigid body step and, then, the top

scoring 200 complexes were further optimized using a flexible

simulated annealing step, followed by a final refinement step in

explicit water. Next, a clustering analysis was performed to identify

the best initial model, that is, the structure of the most populated

cluster with the lowest binding energy. The best docking models

then underwent MM/CG simulations [63,68,69]. In these multiscale

approach, ligand, binding site residues and surrounding water

molecules were treated using the GROMOS96 atomistic force field

[83], whereas the rest of the protein was described at a CG level,

including only the Ca atoms of the amino acids and using a Go-like

model [84]. For hTAS2R46, the model of the receptorestrychnine

complex was used to set up three replicas, with different initial

velocities; a 1 ms-long MM/CG simulationwas run for each [76]. For

hTAS2R38, the models for each receptor-agonist complex (PROP

and PTC) were submitted to MM/CG simulations; for each complex,
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two replicas, differing only in the initial velocities, were run for

0.6 ms [75].

3. Results and discussion

3.1. hTAS2R46 in complex with strychnine

hTAS2R46 is a receptor involved not only in bitter taste

perception, but also in ciliary beat frequency and clearance of mi-

croorganisms in the airways [85] and in blood pressure control in

vascular smooth muscle cells [86]. hTAS2R46 is a promiscuous re-

ceptor [20,73]: it can detect bitter molecules belonging to several

different chemical classes. How hTAS2R46 can discriminate this

wide range of agonists from other bitter molecules is still an open

question. Prof. Meyerhof and coworkers suggested the existence of

an “access control”within the extracellular opening of the receptor

[73] that may act as a selectivity filter. In an effort at providing a

molecular basis of such “access control”, we carried out bioinfor-

matics and MM/CG calculations of hTAS2R46 in complex with its

agonist strychnine [76].

Interestingly, our simulations identify two different binding

poses. In the first pose (Fig. 1a), the ligand is localized in a region

that coincides with the orthosteric site identified in the X-ray

structures of class A GPCRs in complex with their corresponding

agonists. Moreover, like in hTAS2R38 (see below), our MM/CG

simulations predict several binding pocket residues, which are

subsequently validated through experiments [76]. In particular,

Tyr241 and Asn92, which are also highly conserved in the hTAS2R

family, are identified in the orthosteric cavity. Tyr241 forms a p-

stacking interaction with the aromatic ring of the strychnine, as

well as a H-bondwith Asn92. Consistently, themutations Asn92Gln

and Tyr241Phe in hTAS2R46 reduce the receptor activation levels or

abolish the signal completely, respectively, whereas the Tyr241Trp

lowers the EC50 value. Thus, according to these findings, the

interaction between Tyr241 and Asn92 could play a role in receptor

activation more than in ligand selectivity. In this regard, the latter

residue has been shown to be crucial for receptor activation also in

hTAS2R43 [87].

In the second pose (Fig. 1b), the ligand is positioned in the

extracellular region, in a site that resembles the allosteric binding

cavity in class A GPCRs [26,28,88e95], which we called “vestibular”

site. Our simulations identify Leu71 and Asn176 as part of the

vestibular site and provide a molecular level explanation of previ-

ous mutagenesis experimental data [73]. Therefore, the decreased

receptor activation for the Leu71Phe mutant is most likely due to a

reduction of the volume of the vestibular cavity, whereas, for the

Asn176Ala mutant, it is probably caused by the disruption of a H-

bond network involving Asn176 and ECL2, a loop known to be

involved in ligand binding and receptor activation in GPCRs

[89,96,97].

Importantly, some residues known experimentally as function-

ally important, i.e. Leu71 and Asn176 [73], interact with strychnine

only in the vestibular cavity. Hence, the experimental mutagenesis

data cannot be rationalized by taking into account only the ca-

nonical orthosteric binding site, and, instead, the two topographi-

cally distinct ligand binding cavities need to be considered.

Therefore, hTAS2R46 features two binding sites (orthosteric and

vestibular), and both cavities may contribute to the selectivity of

the receptor. In this regard, hTAS2R46 has been found to recognize

at least 28 different agonists [77], belonging to diverse chemical

classes. Given this promiscuity, it is unlikely the orthosteric binding

site alone could discriminate this wide variety of compounds. We

hypothesize that the presence of a second, vestibular site can

provide additional proteineligand contacts that will help to filter

the appropriate agonists out of the pool of more than 100 bitter

compounds known [20].

In order to assess whether this two-step mechanism could also

apply to other bitter taste receptors, we performed a bioinformatics

analysis of the conservation across the hTAS2R family of the resi-

dues identified for hTAS2R46 as functionally important (Fig. 2). We

found that more than 50% of these residues were conserved in at

least two hTAS2Rs. Interestingly, while four of the conserved resi-

dues (positions 2.65, 3.26, 3.29 and 5.39, following the generic

GPCR numbering [98]) were found to be localized only in the pu-

tative vestibular binding site (in red in Fig. 2), five other residues

(3.33, 3.36, 3.37, 3.40 and 7.42) were placed only in the orthosteric

binding site (in green in Fig. 2). These analyses thus suggest that the

two-site architecture may also be present in other human bitter

taste receptors, besides hTAS2R46. This could be related to the

ability of most hTAS2Rs to detect more than one agonist (see

Table 1). Two sites can offer more ligand recognition points than a

single one, thus helping to select the appropriate agonists.

Fig. 1. Human TAS2R46 in complex with its agonist strychnine bound in the vestibular (a) and orthosteric (b) binding sites, together with the 2D structure of the strychnine agonist

(c). In panels A and B, strychnine is shown in cyan and the regions of the protein treated at different resolutions in our MM/CG simulations are displayed with different colors: in

yellow, the atomistic (MM) part of the receptor and, in blue, the coarse-grained (CG) part (see the Materials and methods section). A water droplet (in red) surrounds the

extracellular part of the protein, in order to explicitly account for the hydration of the binding site. The two horizontal black lines delimit the transmembrane part of the receptor or

the position of the lipid bilayer, mimicked by two planar walls in our MM/CG setup. For the sake of clarity, the two hemispheric walls setting a limit on the extracellular and

intracellular ends of the protein, as well as the wall following the initial shape of the interface between protein and membrane, are not shown.
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Nonetheless, further in silico and wet lab experiments are neces-

sary to confirm whether the two-site architecture is present across

the whole hTAS2R family.

3.2. hTAS2R38 in complex with its agonists propylthiouracil (PROP)

and phenylthiocarbamide (PTC)

hTAS2R38 is a receptor involved in bitter taste perception in the

tongue, as well as other extra-oral roles, such as anti-microbial

response in the sinonasal cavity [10,15] and activation of tran-

scription factors in pancreatic tumor cells [100]. Supporting the

putative ectopic roles of hTAS2R38, different hTAS2R38 poly-

morphisms have been associated with several pathologies, such as

predisposition to chronic rhinosinusitis [101], risk of dental caries

[102], alteration of alcohol intake [103], alteration of body mass

index [104], and ingestive behavior in women [105]. hTAS2R38 is a

chemical group-specific bitter taste receptor [77], since it detects

bitter agonists containing an isothiocyanate or thiourea group.

Here we investigate the receptor in complex with two typical

agonists, PTC and PROP, by MM/CG simulations (Fig. 3a). The cal-

culations turned out to be consistent with functional data for nine

mutants [74,75]. In particular, we observed that the Asn103 side-

chain forms a H-bond with both ligands (see Fig. 3b). This is

consistent with the experimental data showing that Asn103Ala,

Asn103Val and Asn103Asp mutations result in EC50 larger values

than the WT for both agonists: the first two mutations impair the

formation of the H-bond, whereas the presence of the Asp in po-

sition 103 causes a repulsive electrostatic interaction with the

partially negatively charged sulfur atom of the two ligands (see

Fig. 3b). The simulations also show that Ser259 is in close proximity

to the ligand without any direct interaction. Therefore, the larger

EC50 value of Ser259Val mutant compared to the WT is probably

due to the presence of a bulkier residue that could hinder binding,

rather than to the loss of a H-bond. Indeed, mutation of Ser259 into

Ala, a residue similar in size, maintains EC50 values similar to the

WT. The EC50 values of Trp99Ala, Trp99Val and Met100Ala are

similar to those of WT for both agonists, while those of the

Met100Val mutant are larger than the WT. The simulations suggest

that Trp99 and Met100 do not interact directly with the ligand,

though they are located close to the binding pocket and, thus, when

Met100 is mutated into a branched amino acid, Val, it may occlude

the binding site.

Based on the results of the MM/CG calculations, new mutations

were designed so as to affect the proteineligands interactions.

Residues Asn179, Arg181 and Asn183 do not show any interactions

with either of the two agonists during the MM/CG simulations, and

hencemutation of these residues into Ala or Val are not expected to

alter significantly the EC50 values measured for the WT.

Fig. 2. Position of residues in the hTAS2R46 receptor for which experimental mutagenesis data are available. In green, residues belonging to the orthosteric binding site (3.35, 3.36,

3.37, 3.40, 3.41, 5.46 and 7.42), in red those located in the vestibular site (2.61, ECL1, 3.26, 3.29, 5.39, 5.40 and 6.55), and in yellow residues common to both binding cavities (3.31,

3.32, 3.33, 5.42, 5.43, 6.51, 6.52 and 7.39).

Table 1

25 human bitter taste receptors with their respective number of agonists. Data compiled from the BitterDB [99] (http://bitterdb.agri.huji.ac.il) and reference [77]. For some

receptors (markedwith*), two names are given; the first one corresponds to the BitterDB and the second one is the one used in reference [77]. Note also that four receptors still

remain orphan (i.e. number of identified ligands is 0).

Receptor name Number of ligands Receptor name Number of ligands

BitterDB Reference [77] BitterDB Reference [77]

TAS2R1 35 12 TAS2R40 11 5

TAS2R3 1 1 TAS2R41 1 1

TAS2R4 22 12 TAS2R42 0 0

TAS2R5 1 3 TAS2R43 16 13

TAS2R7 6 7 TAS2R44/31* 8 6

TAS2R8 3 3 TAS2R45 0 0

TAS2R9 3 2 TAS2R46 27 28

TAS2R10 31 29 TAS2R47/30* 10 7

TAS2R13 2 1 TAS2R48 0 0

TAS2R14 47 34 TAS2R49/20* 2 1

TAS2R16 10 5 TAS2R50 2 1

TAS2R38 21 24 TAS2R60/56* 0 0

TAS2R39 20 11
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Experiments performed in that work [75] show that this is indeed

the case. In contrast, residues Phe197, Phe264 and Trp201 establish

pep stacking interactions with both agonists during the MM/CG

simulations, and thus we can predict that the EC50 values of

Phe197Val, Phe264Ala, Phe264Val and Trp201Leu are larger than

those of the WT. Also in this case, experiments show the validity of

these predictions.

Interestingly, Asn103, which forms a H-bond with the agonists

in hTAS2R38 [74,75], is highly conserved across hTAS2Rs, and has

also been shown to be involved in ligand binding in hTAS2R46 [73],

hTAS2R31 [73,87] hTAS2R43 [87] and hTAS2R16 [106]. Moreover,

Phe264 and Trp99 are found to shape the ligand binding pocket for

both hTAS2R38 agonists, PTC and PROP [75]. These two evidences

support the hypothesis of Meyerhof and coworkers that different

agonists may have similar orthosteric binding pockets in hTAS2Rs

[73].

In conclusion, our MM/CG simulations results on hTAS2R38 are

consistent with more than 20 mutagenesis data. These predictions

would have been impossible to achieve using the bioinformatics

approach only. In particular, the poses predicted by bioinformatics

lack key H-bond and pep stacking ligand/protein interactions. This

points to the relevance of molecular dynamics simulations for the

structural refinement of these receptors' models. The fact that our

simulations were not able to capture the vestibular binding site in

hTAS2R38 may imply either that only one cavity is needed for the

less promiscuous hTAS2R38 receptor or that more simulations are

needed.

4. Conclusion

Our MM/CG-based predictions provide a rather detailed

description of hTAS2R46- and hTAS2R38-agonist interactions,

consistent with mutagenesis data [74e76]. They also allow us to

hypothesize that hTAS2R46 features a two-site architecture, with

an orthosteric and a vestibular binding site, similar to what has

been already suggested for other members of the class A GPCRs

[26,28,88e95]. The existence of a second binding site may be

crucial to recognize the wide variety of hTAS2R46 agonists, by

providing a two-step authentication mechanism for this promis-

cuous receptor. In contrast, the vestibular site was not captured by

our simulations of hTAS2R38, perhaps because it is not required for

a more selective receptor [77]. Nonetheless, a conservation analysis

of the binding residues across the whole hTAS2R family suggests

that this two-site architecture might also be present in other

hTAS2Rs. Therefore, further simulations and mutagenesis studies

are necessary to clarify this point.
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