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Towards smoke and fire simulation with grid adaptive FEM:
Verification of the flow solver.
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In fire safety science and engineering, the
Fire Dynamics Simulator (FDS, [1]) is a well
established tool, which encounters limits at
complex geometries and large—scale problems
because of static, structured meshes.

. To overcome these, a new approach using the
Finite Element Method (FEM) with unstruc-

tured meshes and adaptive methods with a
. dynamic mesh resolution will be presented.

The underlying model is presented along with
its numerical implementation. First attempts
iIn the verification of the flow solver are pre-
sented and compared to FDS. A demonstration
of adaptive mesh refinement and the scaling on
the JURECA [2] supercomputer is shown.

Figure: Demonstration of adaptive mesh refinement using the Gould vortex example [1]. The mesh of corresponding
simulation runs are displayed a few steps after initialization along with the decomposed domain, here on eight cores,
(left) and the smaller region of interest with the velocity magnitude a few steps later (right).

Adaptive Mesh Refinement Verification |
Solutions of PDEs in FEM require Determination of convergence order " OF the convergence analysis, the
- domain decomposition in cells of length h <> with Richardson extrapolation [1]: McDermott testcase [1] is chosen.
= shape functions of polynomial degree fo— f '
P PoY JEEP In (f3 f2> = plIn(r) (5)
2 — N

Adjustment of parameters locally where necessary as compro-
mise between accuracy and runtime. Our refinement criterion:

= Reference: Norm of velocity gradient ||Vul||.
= Flag top/lower 30% for refinement/coarsening at each step.

In FDS, final velocity uy, in the
domain center is chosen as the ref-
erence f. For comparison with FEM
however, we need to take into ac-
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Figure: Demonstration of adaptive mesh refinement using the Gould vortex example [1]. [+ measured time, 64° cells | 02 D
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Numerical implementation with semi—implicit time marching scheme of
first order and FEM for space discretization of arbitrary order using the
deal.ll library [3].
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