000834657 001__ 834657
000834657 005__ 20230217124359.0
000834657 0247_ $$2doi$$a10.1103/PhysRevE.96.013201
000834657 0247_ $$2ISSN$$a1063-651X
000834657 0247_ $$2ISSN$$a1095-3787
000834657 0247_ $$2ISSN$$a1539-3755
000834657 0247_ $$2ISSN$$a1550-2376
000834657 0247_ $$2ISSN$$a2470-0045
000834657 0247_ $$2ISSN$$a2470-0053
000834657 0247_ $$2Handle$$a2128/14882
000834657 0247_ $$2WOS$$aWOS:000405206200026
000834657 0247_ $$2altmetric$$aaltmetric:15679837
000834657 0247_ $$2pmid$$apmid:29347155
000834657 037__ $$aFZJ-2017-04561
000834657 082__ $$a530
000834657 1001_ $$0P:(DE-HGF)0$$aWang, Wei-Min$$b0$$eCorresponding author
000834657 245__ $$aLaser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects
000834657 260__ $$aWoodbury, NY$$bInst.$$c2017
000834657 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2017-07-05
000834657 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2017-07-01
000834657 3367_ $$2DRIVER$$aarticle
000834657 3367_ $$2DataCite$$aOutput Types/Journal article
000834657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499751714_5740
000834657 3367_ $$2BibTeX$$aARTICLE
000834657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834657 3367_ $$00$$2EndNote$$aJournal Article
000834657 520__ $$aWe investigate how next-generation laser pulses at 10–200 PW interact with a solid target in the presence ofa relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boringand relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -rayphotons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasmadensity is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasmacan block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energyto the photons. This renders a 1-μm scale-length, underdense preplasma completely opaque to laser pulses atthis power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulsein solid-target experiments than expected by classical plasma physics. Our simulations show, for example, thatproton acceleration from the rear of a solid with a preplasma would be strongly impaired.
000834657 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000834657 542__ $$2Crossref$$i2017-07-05$$uhttp://link.aps.org/licenses/aps-default-license
000834657 588__ $$aDataset connected to CrossRef
000834657 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b1
000834657 7001_ $$0P:(DE-HGF)0$$aSheng, Z.-M.$$b2
000834657 7001_ $$0P:(DE-HGF)0$$aLi, Y.-T.$$b3
000834657 7001_ $$0P:(DE-HGF)0$$aZhang, J.$$b4
000834657 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.96.013201$$bAmerican Physical Society (APS)$$d2017-07-05$$n1$$p013201$$tPhysical Review E$$v96$$x2470-0045$$y2017
000834657 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.96.013201$$gVol. 96, no. 1, p. 013201$$n1$$p013201$$tPhysical review / E$$v96$$x2470-0045$$y2017
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.pdf$$yOpenAccess
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.gif?subformat=icon$$xicon$$yOpenAccess
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834657 8564_ $$uhttps://juser.fz-juelich.de/record/834657/files/PhysRevE.96.013201.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834657 909CO $$ooai:juser.fz-juelich.de:834657$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000834657 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000834657 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172738$$aExternal Institute$$b4$$kExtern
000834657 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000834657 9141_ $$y2017
000834657 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834657 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834657 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000834657 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834657 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834657 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834657 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834657 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834657 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834657 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2015
000834657 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834657 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834657 920__ $$lyes
000834657 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000834657 980__ $$ajournal
000834657 980__ $$aVDB
000834657 980__ $$aUNRESTRICTED
000834657 980__ $$aI:(DE-Juel1)JSC-20090406
000834657 9801_ $$aFullTexts
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.38.626
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.14.054401
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.165006
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.245006
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01339461
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.82.664
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.200403
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.080402
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.220407
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.035001
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.195005
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.115.215003
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4861863
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4950841
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.95.023210
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1646737
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.026404
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.175003
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.135003
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/1/013021
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.12.121301
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/4/045021
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4775728
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.870766
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.50
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.445
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.145001
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2898456
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.145008
000834657 999C5 $$1P. Gibbon$$2Crossref$$oP. Gibbon Short Pulse Laser Interactions with Matter 2000$$tShort Pulse Laser Interactions with Matter$$y2000
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.91.013101
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.29.002837
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcp.2016.06.004
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.015001
000834657 999C5 $$1M. Borghesi$$2Crossref$$9-- missing cx lookup --$$a10.13182/FST06-A1159$$p412 -$$tFusion Sci. Technol.$$v49$$y2006
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.105001
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/12/12/123005
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/4/043051
000834657 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4962567