001     834661
005     20220930130126.0
024 7 _ |a 10.1111/nph.14641
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a 2128/15251
|2 Handle
024 7 _ |a WOS:000405197500031
|2 WOS
024 7 _ |a altmetric:21388572
|2 altmetric
024 7 _ |a pmid:28653341
|2 pmid
037 _ _ |a FZJ-2017-04565
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Postma, Johannes Auke
|0 P:(DE-Juel1)144879
|b 0
|e Corresponding author
245 _ _ |a OpenSimRoot: Widening the scope and application of root architectural models
260 _ _ |a Oxford [u.a.]
|c 2017
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504706738_6629
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Research Conducted and Rationale: OpenSimRoot is an open sourced, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community.Description: OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition, and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient, and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species.Key results and unique features: The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate 1) resource costs of developmental and anatomical traits, 2) trait synergisms, 3) (inter species) root competition. OpenSimRoot can model 3D images from MRI and X-ray CT of roots in soil. New modules include: 1) soil water dependent water uptake and xylem flow, 2) tiller formation, 3) evapotranspiration, 4) simultaneous simulation of mobile solutes, 5) mesh refinement, and 6) root growth plasticity. Conclusion: OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and gain mechanistic understanding at system scales. Keywords: Root system architecture, Functional Structural Plant Model, OpenSimRoot, Root architectural traits, Simulation, Model driven Phenotyping, Plant nutrition
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kuppe, Christian
|0 P:(DE-Juel1)161296
|b 1
|u fzj
700 1 _ |a Owen, Markus R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mellor, Nathan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Griffiths, Marcus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bennett, Malcolm J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lynch, Jonathan P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 7
|u fzj
773 _ _ |a 10.1111/nph.14641
|0 PERI:(DE-600)1472194-6
|n 3
|p -
|t The new phytologist
|v 215
|y 2017
|x 0028-646X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834661/files/Postma_et_al-2017-New_Phytologist.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834661
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)166460
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21