000834662 001__ 834662
000834662 005__ 20210129230721.0
000834662 0247_ $$2doi$$a10.1104/pp.17.00648
000834662 0247_ $$2ISSN$$a0032-0889
000834662 0247_ $$2ISSN$$a1532-2548
000834662 0247_ $$2WOS$$aWOS:000406865900028
000834662 0247_ $$2altmetric$$aaltmetric:21475337
000834662 0247_ $$2pmid$$apmid:28667049
000834662 037__ $$aFZJ-2017-04566
000834662 041__ $$aEnglish
000834662 082__ $$a580
000834662 1001_ $$0P:(DE-Juel1)161532$$aSchneider, Hannah$$b0
000834662 245__ $$aRoot Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K
000834662 260__ $$aRockville, Md.$$bSoc.$$c2017
000834662 3367_ $$2DRIVER$$aarticle
000834662 3367_ $$2DataCite$$aOutput Types/Journal article
000834662 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505804906_21742
000834662 3367_ $$2BibTeX$$aARTICLE
000834662 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834662 3367_ $$00$$2EndNote$$aJournal Article
000834662 520__ $$aRoot cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance.
000834662 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000834662 588__ $$aDataset connected to CrossRef
000834662 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b1$$ufzj
000834662 7001_ $$0P:(DE-Juel1)156560$$aWojciechowski, Tobias$$b2$$ufzj
000834662 7001_ $$0P:(DE-Juel1)161296$$aKuppe, Christian$$b3$$ufzj
000834662 7001_ $$0P:(DE-HGF)0$$aLynch, Jonathan$$b4$$eCorresponding author
000834662 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.17.00648$$gp. pp.00648.2017 -$$n4$$p2333–2347$$tPlant physiology$$v174$$x1532-2548$$y2017
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.pdf$$yRestricted
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.gif?subformat=icon$$xicon$$yRestricted
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834662 8564_ $$uhttps://juser.fz-juelich.de/record/834662/files/2333.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834662 909CO $$ooai:juser.fz-juelich.de:834662$$pVDB
000834662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b1$$kFZJ
000834662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156560$$aForschungszentrum Jülich$$b2$$kFZJ
000834662 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161296$$aForschungszentrum Jülich$$b3$$kFZJ
000834662 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000834662 9141_ $$y2017
000834662 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000834662 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834662 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834662 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834662 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2015
000834662 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834662 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834662 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834662 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834662 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834662 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834662 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000834662 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000834662 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000834662 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2015
000834662 920__ $$lyes
000834662 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000834662 980__ $$ajournal
000834662 980__ $$aVDB
000834662 980__ $$aI:(DE-Juel1)IBG-2-20101118
000834662 980__ $$aUNRESTRICTED