000834691 001__ 834691
000834691 005__ 20230426083147.0
000834691 0247_ $$2doi$$a10.1103/PhysRevB.95.214425
000834691 0247_ $$2ISSN$$a0163-1829
000834691 0247_ $$2ISSN$$a0556-2805
000834691 0247_ $$2ISSN$$a1094-1622
000834691 0247_ $$2ISSN$$a1095-3795
000834691 0247_ $$2ISSN$$a1098-0121
000834691 0247_ $$2ISSN$$a1550-235X
000834691 0247_ $$2ISSN$$a2469-9950
000834691 0247_ $$2ISSN$$a2469-9969
000834691 0247_ $$2Handle$$a2128/14899
000834691 0247_ $$2WOS$$aWOS:000404463800005
000834691 0247_ $$2altmetric$$aaltmetric:21397829
000834691 037__ $$aFZJ-2017-04594
000834691 082__ $$a530
000834691 1001_ $$0P:(DE-HGF)0$$aGeselbracht, P.$$b0
000834691 245__ $$aMagnetic phase diagram of CeCu 2 Ge 2 up to 15 T: On the route to understand field-induced phase transitions
000834691 260__ $$aWoodbury, NY$$bInst.$$c2017
000834691 3367_ $$2DRIVER$$aarticle
000834691 3367_ $$2DataCite$$aOutput Types/Journal article
000834691 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499849699_10758
000834691 3367_ $$2BibTeX$$aARTICLE
000834691 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834691 3367_ $$00$$2EndNote$$aJournal Article
000834691 520__ $$aThe features of the magnetic (H,T ) phase diagram of CeCu2Ge2 are similar to those of superconductingCeCu2Si2, but the nature of these phases and transitions is still controversial. For CeCu2Ge2 we present resultson electrical transport, thermodynamic measurements (magnetization, magnetostriction), and elastic neutrondiffraction for fields up to 15 T parallel to the [110] direction. Two magnetic phases AF1, AF2 and a third,yet unidentified ferrimagnetic phase AF3 exist below TN = 4.2 K and in fields up to approximately 26 T. Attemperatures below 2.5 K a first-order transition from AF1 to AF2 at around 7.8 T was found experimentally,characterized by a shift of the observed propagation vector from q1 = (0.285 − 0.285 0.543) to q2 = (0.34 −0.27 0.55). Above 12.5 T reflections belonging neither to the AF1 nor to the AF2 type were found. To interpretthe macroscopic measurements and neutron data a mean-field simulation with the McPhase program was carriedout, yielding a low-field double-q magnetic structure AF1 with q1± = (0.278 ± 0.278 0.556) that jumps toAF2 with q2± = (0.286 ± 0.286 0.545) at about 5 T (to be compared to the experimental value of 7.8 T). Thistransition is followed by a single-q structure AF3 with q3 = (0.28 0.28 0.56) at 10 T (as compared to 12.5 Tfrom experiment) that is stable up to saturation at 26 T. These calculations also reveal the principal dependenceof the experimental magnetization and susceptibility published earlier. The predicted single-q structure was notdetectable by neutrons because of limitations in the employed scattering geometry.
000834691 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000834691 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000834691 542__ $$2Crossref$$i2017-06-28$$uhttp://link.aps.org/licenses/aps-default-license
000834691 588__ $$aDataset connected to CrossRef
000834691 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000834691 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000834691 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0
000834691 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, A.$$b1$$ufzj
000834691 7001_ $$0P:(DE-HGF)0$$aDoerr, M.$$b2$$eCorresponding author
000834691 7001_ $$0P:(DE-HGF)0$$aGranovsky, S.$$b3
000834691 7001_ $$0P:(DE-HGF)0$$aRotter, M.$$b4
000834691 7001_ $$0P:(DE-HGF)0$$aLoewenhaupt, M.$$b5
000834691 7001_ $$0P:(DE-HGF)0$$aScheerer, G. W.$$b6
000834691 7001_ $$0P:(DE-HGF)0$$aRen, Z.$$b7
000834691 7001_ $$0P:(DE-HGF)0$$aProkeš, K.$$b8
000834691 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.214425$$bAmerican Physical Society (APS)$$d2017-06-28$$n21$$p214425$$tPhysical Review B$$v95$$x2469-9950$$y2017
000834691 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.214425$$gVol. 95, no. 21, p. 214425$$n21$$p214425$$tPhysical review / B$$v95$$x2469-9950$$y2017
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.pdf$$yOpenAccess
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.gif?subformat=icon$$xicon$$yOpenAccess
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834691 8564_ $$uhttps://juser.fz-juelich.de/record/834691/files/2107-geselbracht-PhysRevB.95.214425-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834691 909CO $$ooai:juser.fz-juelich.de:834691$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000834691 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b1$$kFZJ
000834691 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000834691 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000834691 9141_ $$y2017
000834691 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834691 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834691 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000834691 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000834691 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834691 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834691 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834691 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834691 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834691 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834691 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834691 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834691 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834691 920__ $$lyes
000834691 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000834691 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000834691 980__ $$ajournal
000834691 980__ $$aVDB
000834691 980__ $$aUNRESTRICTED
000834691 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000834691 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000834691 9801_ $$aFullTexts
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.crhy.2011.05.002
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2005.01.056
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0921-4526(98)01069-2
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.024508
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01313625
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.6416
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10909-007-9303-3
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep00117
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phpro.2015.12.191
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phpro.2015.12.028
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2007.10.338
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.phpro.2015.12.073
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-6596/391/1/012010
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.155101
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3673816
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1149009
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.8922
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep18699
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/24/21/213201
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.333545
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.201108
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.046401
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s100510050103
000834691 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.134408