000834705 001__ 834705
000834705 005__ 20240711085658.0
000834705 0247_ $$2doi$$a10.1021/acs.chemmater.7b01611
000834705 0247_ $$2ISSN$$a0897-4756
000834705 0247_ $$2ISSN$$a1520-5002
000834705 0247_ $$2WOS$$aWOS:000410868600024
000834705 037__ $$aFZJ-2017-04608
000834705 041__ $$aEnglish
000834705 082__ $$a540
000834705 1001_ $$0P:(DE-HGF)0$$aFominykh, Ksenia$$b0
000834705 245__ $$aNon-agglomerated iron oxyhydroxide akaganeite nanocrystals incorporating extraordinary high amounts of different dopants
000834705 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2017
000834705 3367_ $$2DRIVER$$aarticle
000834705 3367_ $$2DataCite$$aOutput Types/Journal article
000834705 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507200371_26353
000834705 3367_ $$2BibTeX$$aARTICLE
000834705 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834705 3367_ $$00$$2EndNote$$aJournal Article
000834705 520__ $$aDispersible nonagglomerated akaganeite (β-FeOOH) nanocrystals doped with various elements in different oxidation states such as Co(II), Ni(II), V(III), Ti(IV), Sn(IV), Si(IV), and Nb(V) were prepared using a microwave-assisted solvothermal synthesis in tert-butanol. The doping elements could be incorporated in very high concentrations of up to 20 at. %, which is attributed to the kinetic control of the phase formation during the solvothermal reaction, together with the extremely small crystal size, which can stabilize the unusual structural compositions. The particle morphology is mostly anisotropic consisting of nanorods ∼4 nm in width and varying length. Depending on the doping element, the length ranges from ∼4 nm, resulting in an almost-spherical shape, to 90 nm, giving the highest aspect ratio. The particles are perfectly dispersible in water, giving stable colloidal dispersions that can be deposited on different substrates to produce thin films 35–250 nm thick. In addition, films up to 30 μm thick, consisting of interconnected mesoporous spheres, can be prepared in situ during the reactions. The nanostructures assembled from akaganeite nanocrystals are stable up to high temperatures of >400 °C. They can be transformed to hematite (α-Fe2O3) by heating between 480 °C and 600 °C without losing the morphology, which can be used for the fabrication of doped hematite nanostructures. The tunable properties of the doped akaganeite nanoparticles make them excellent candidates for a wide range of applications, as well as versatile building blocks for the fabrication of doped hematite nanomorphologies.
000834705 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000834705 588__ $$aDataset connected to CrossRef
000834705 7001_ $$0P:(DE-HGF)0$$aBoehm, Daniel$$b1
000834705 7001_ $$0P:(DE-HGF)0$$aZhang, Siyuan$$b2
000834705 7001_ $$0P:(DE-HGF)0$$aFolger, Alena$$b3
000834705 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b4
000834705 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b5
000834705 7001_ $$0P:(DE-HGF)0$$aScheu, Christina$$b6
000834705 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7$$eCorresponding author
000834705 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.7b01611$$gp. acs.chemmater.7b01611$$n17$$p7223-7233$$tChemistry of materials$$v29$$x1520-5002$$y2017
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.pdf$$yRestricted
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.gif?subformat=icon$$xicon$$yRestricted
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834705 8564_ $$uhttps://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834705 909CO $$ooai:juser.fz-juelich.de:834705$$pVDB
000834705 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
000834705 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000834705 9141_ $$y2017
000834705 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834705 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2015
000834705 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834705 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834705 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834705 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834705 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834705 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834705 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834705 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834705 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834705 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000834705 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2015
000834705 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000834705 980__ $$ajournal
000834705 980__ $$aVDB
000834705 980__ $$aI:(DE-Juel1)IEK-1-20101013
000834705 980__ $$aUNRESTRICTED
000834705 981__ $$aI:(DE-Juel1)IMD-2-20101013