001     834705
005     20240711085658.0
024 7 _ |a 10.1021/acs.chemmater.7b01611
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a WOS:000410868600024
|2 WOS
037 _ _ |a FZJ-2017-04608
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Fominykh, Ksenia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Non-agglomerated iron oxyhydroxide akaganeite nanocrystals incorporating extraordinary high amounts of different dopants
260 _ _ |a Washington, DC
|c 2017
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507200371_26353
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dispersible nonagglomerated akaganeite (β-FeOOH) nanocrystals doped with various elements in different oxidation states such as Co(II), Ni(II), V(III), Ti(IV), Sn(IV), Si(IV), and Nb(V) were prepared using a microwave-assisted solvothermal synthesis in tert-butanol. The doping elements could be incorporated in very high concentrations of up to 20 at. %, which is attributed to the kinetic control of the phase formation during the solvothermal reaction, together with the extremely small crystal size, which can stabilize the unusual structural compositions. The particle morphology is mostly anisotropic consisting of nanorods ∼4 nm in width and varying length. Depending on the doping element, the length ranges from ∼4 nm, resulting in an almost-spherical shape, to 90 nm, giving the highest aspect ratio. The particles are perfectly dispersible in water, giving stable colloidal dispersions that can be deposited on different substrates to produce thin films 35–250 nm thick. In addition, films up to 30 μm thick, consisting of interconnected mesoporous spheres, can be prepared in situ during the reactions. The nanostructures assembled from akaganeite nanocrystals are stable up to high temperatures of >400 °C. They can be transformed to hematite (α-Fe2O3) by heating between 480 °C and 600 °C without losing the morphology, which can be used for the fabrication of doped hematite nanostructures. The tunable properties of the doped akaganeite nanoparticles make them excellent candidates for a wide range of applications, as well as versatile building blocks for the fabrication of doped hematite nanomorphologies.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Boehm, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Siyuan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Folger, Alena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Döblinger, Markus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Scheu, Christina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.7b01611
|g p. acs.chemmater.7b01611
|0 PERI:(DE-600)1500399-1
|n 17
|p 7223-7233
|t Chemistry of materials
|v 29
|y 2017
|x 1520-5002
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834705/files/acs.chemmater.7b01611.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834705
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2015
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21