000834728 001__ 834728
000834728 005__ 20210129230727.0
000834728 0247_ $$2doi$$a10.1016/j.jbiotec.2017.04.016
000834728 0247_ $$2ISSN$$a0168-1656
000834728 0247_ $$2ISSN$$a1873-4863
000834728 0247_ $$2pmid$$apmid:28433722
000834728 0247_ $$2WOS$$aWOS:000412611100024
000834728 0247_ $$2altmetric$$aaltmetric:19511139
000834728 037__ $$aFZJ-2017-04627
000834728 041__ $$aEnglish
000834728 082__ $$a540
000834728 1001_ $$0P:(DE-Juel1)162498$$aKranz, Angela$$b0
000834728 245__ $$aHigh precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads
000834728 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000834728 3367_ $$2DRIVER$$aarticle
000834728 3367_ $$2DataCite$$aOutput Types/Journal article
000834728 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507109051_26430
000834728 3367_ $$2BibTeX$$aARTICLE
000834728 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834728 3367_ $$00$$2EndNote$$aJournal Article
000834728 500__ $$aBiotechnologie1
000834728 520__ $$aState of the art and novel high-throughput DNA sequencing technologies enable fascinating opportunities and applications in the life sciences including microbial genomics. Short high-quality read data already enable not only microbial genome sequencing, yet can be inadequately to solve problems in genome assemblies and for the analysis of structural variants, especially in engineered microbial cell factories. Single-molecule real-time sequencing technologies generating long reads promise to solve such assembly problems. In our study, we wanted to increase the average read length of long nanopore reads with R9 chemistry and conducted a hybrid approach for the analysis of structural variants to check the genome stability of a recombinant Gluconobacter oxydans 621H strain (IK003.1) engineered for improved growth. Therefore we combined accurate Illumina sequencing technology and low-cost single-molecule nanopore sequencing using the MinION® device from Oxford Nanopore. In our hybrid approach with a modified library protocol we could increase the average size of nanopore 2D reads to about 18.9 kb. Combining the long MinION nanopore reads with the high quality short Illumina reads enabled the assembly of the engineered chromosome into a single contig and comprehensive detection and clarification of 7 structural variants including all three known genetically engineered modifications. We found the genome of IK003.1 was stable over 70 generations of strain handling including 28 h of process time in a bioreactor. The long read data revealed a novel 1420 bp transposon-flanked and ORF-containing sequence which was hitherto unknown in the G. oxydans 621H reference. Further analysis and genome sequencing showed that this region is already present in G. oxydans 621H wild-type strains. Our data of G. oxydans 621H wild-type DNA from different resources also revealed in 73 annotated coding sequences about 91 uniform nucleotide differences including InDels. Together, our results contribute to an improved high quality genome reference for G. oxydans 621H which is available via ENA accession PRJEB18739.
000834728 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000834728 588__ $$aDataset connected to CrossRef
000834728 7001_ $$0P:(DE-HGF)0$$aVogel, Alexander$$b1
000834728 7001_ $$0P:(DE-Juel1)128954$$aDegner, Ursula$$b2
000834728 7001_ $$0P:(DE-Juel1)145310$$aKiefler, Ines$$b3
000834728 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b4
000834728 7001_ $$0P:(DE-Juel1)145719$$aUsadel, Björn$$b5
000834728 7001_ $$0P:(DE-Juel1)128982$$aPolen, Tino$$b6$$eCorresponding author
000834728 773__ $$0PERI:(DE-600)2016476-2$$a10.1016/j.jbiotec.2017.04.016$$gp. S0168165617301700$$p197-205$$tJournal of biotechnology$$v258$$x0168-1656$$y2017
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.pdf$$yRestricted
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.gif?subformat=icon$$xicon$$yRestricted
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834728 8564_ $$uhttps://juser.fz-juelich.de/record/834728/files/1-s2.0-S0168165617301700-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834728 909CO $$ooai:juser.fz-juelich.de:834728$$pVDB
000834728 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834728 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834728 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834728 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOTECHNOL : 2015
000834728 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834728 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834728 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834728 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834728 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834728 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834728 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834728 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000834728 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000834728 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000834728 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834728 9141_ $$y2017
000834728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162498$$aForschungszentrum Jülich$$b0$$kFZJ
000834728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128954$$aForschungszentrum Jülich$$b2$$kFZJ
000834728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich$$b4$$kFZJ
000834728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145719$$aForschungszentrum Jülich$$b5$$kFZJ
000834728 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128982$$aForschungszentrum Jülich$$b6$$kFZJ
000834728 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000834728 920__ $$lyes
000834728 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000834728 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000834728 980__ $$ajournal
000834728 980__ $$aVDB
000834728 980__ $$aI:(DE-Juel1)IBG-1-20101118
000834728 980__ $$aI:(DE-Juel1)IBG-2-20101118
000834728 980__ $$aUNRESTRICTED