001     834817
005     20240712100900.0
024 7 _ |a 10.1175/JAS-D-16-0367.1
|2 doi
024 7 _ |a 0022-4928
|2 ISSN
024 7 _ |a 0095-9634
|2 ISSN
024 7 _ |a 1520-0469
|2 ISSN
024 7 _ |a 2128/15787
|2 Handle
024 7 _ |a WOS:000409133100015
|2 WOS
037 _ _ |a FZJ-2017-04708
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Konopka, Paul
|0 P:(DE-Juel1)129130
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Regionally resolved diagnostic of transport: A simplified forward model for CO$_{2}$
260 _ _ |a Boston, Mass.
|c 2017
|b American Meteorological Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510065060_4910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Simply diagnostic tools are useful to understand transport processes in complex chemistry transport models (CTMs). For this purpose, a combined use of the air-mass origin fractions (AOFs) and regionally resolved mean ages (RMAs) is presented. This approach merges the concept of the origin of air with the well-known theory of the mean age of air (AoA) for different regions covering the whole Earth. We show how the AoA calculated relative to the Earth’s surface can be decomposed into regionally resolved components (i.e. into RMAs). Using both AOFs and RMAs, we discuss differences in the seasonality of transport from the northern and southern hemispheres into the tropical tropopause layer (TTL), the asymmetries of the interhemispheric exchange as well as differences in relation to the continental or oceanic origin of air. Furthermore, a simplified transport model for a chemically passive species (tracer) is formulated, which has some potential to approximate the full transport within a CTM. This analytic approach uses the AOFs as well as the RMAs as parameters to propagate a tracer prescribed on the Earth’s surface (lower boundary condition). This method is exactly valid for sources which change linearly with time in each of the considered regions. We analyze how well this approach approximates the propagation of CO2 from the planetary boundary layer (PBL) into the whole atmosphere. The CO2 values in the PBL are specified by the CarbonTracker data set. We discuss how this approach can be used for inverse modeling of CO2.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ploeger, Felix
|0 P:(DE-Juel1)129141
|b 1
|u fzj
700 1 _ |a Tao, Mengchu
|0 P:(DE-Juel1)156119
|b 2
|u fzj
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 3
|u fzj
773 _ _ |a 10.1175/JAS-D-16-0367.1
|g p. JAS-D-16-0367.1
|0 PERI:(DE-600)2025890-2
|p 2689
|t Journal of the atmospheric sciences
|v
|y 2017
|x 1520-0469
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834817/files/jas-d-16-0367.1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834817
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156119
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ATMOS SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21