000834972 001__ 834972
000834972 005__ 20220930130127.0
000834972 0247_ $$2doi$$a10.1109/JSTARS.2017.2716638
000834972 0247_ $$2ISSN$$a1939-1404
000834972 0247_ $$2ISSN$$a2151-1535
000834972 0247_ $$2WOS$$aWOS:000412626500022
000834972 0247_ $$2altmetric$$aaltmetric:23396884
000834972 037__ $$aFZJ-2017-04842
000834972 041__ $$aEnglish
000834972 082__ $$a520
000834972 1001_ $$0P:(DE-Juel1)144811$$aRotzer, Kathrina$$b0$$eCorresponding author$$ufzj
000834972 245__ $$aRelationship Between Vegetation Microwave Optical Depth and Cross-Polarized Backscatter From Multiyear Aquarius Observations
000834972 260__ $$aNew York, NY$$bIEEE$$c2017
000834972 3367_ $$2DRIVER$$aarticle
000834972 3367_ $$2DataCite$$aOutput Types/Journal article
000834972 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1507550080_21546
000834972 3367_ $$2BibTeX$$aARTICLE
000834972 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834972 3367_ $$00$$2EndNote$$aJournal Article
000834972 520__ $$aSoil moisture retrieval algorithms based on passive microwave remote sensing observations need to account for vegetation attenuation and emission, which is generally parameterized as vegetation optical depth (VOD). This multisensor study tests a new method to retrieve VOD from cross-polarized radar backscattering coefficients. Three years of Aquarius/SAC-D data were used to establish a relationship between the cross-polarized backscattering coefficient σHV and VOD derived from a multitemporal passive dual-channel algorithm (VODMT). The dependence of the correspondence is analyzed for different land use classes. There are no systematic differences in the slope for woody versus nonwoody vegetation, resulting in a strong correlation (80% explained-variance) and a global linear relationship when all classes are combined. The relationship is stable over the years of observations. The comparison of the Aquarius-derived VODMT to Soil Moisture and Ocean Salinity's multi-angular VOD estimates shows similar spatial patterns and temporal behavior, evident in high correlations. However, VODMT has considerably higher mean values, but lower dynamic range globally. Most of the differences can be attributed to differences in instrument sampling. The main result of this study, a relationship between backscatter and VOD, will permit high-resolution mapping of VOD with synthetic aperture radar measurements. These maps allow future studies of scaling and heterogeneity effects of vegetation on soil moisture retrieval at the coarser scales of land microwave radiometry. The study shows that VOD based on passive measurements and predicted by active measurements are comparable globally and that the breakdown by land cover classification does not affect the relationship appreciably.
000834972 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000834972 588__ $$aDataset connected to CrossRef
000834972 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b1$$ufzj
000834972 7001_ $$0P:(DE-HGF)0$$aEntekhabi, Dara$$b2
000834972 7001_ $$0P:(DE-HGF)0$$aKonings, Alexandra G.$$b3
000834972 7001_ $$0P:(DE-HGF)0$$aMcColl, Kaighin A.$$b4
000834972 7001_ $$0P:(DE-HGF)0$$aPiles, Maria$$b5
000834972 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000834972 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2017.2716638$$gp. 1 - 11$$n10$$p4493 - 4503$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v10$$x2151-1535$$y2017
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.pdf$$yRestricted
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.gif?subformat=icon$$xicon$$yRestricted
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834972 8564_ $$uhttps://juser.fz-juelich.de/record/834972/files/07972953.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834972 8767_ $$81-9932736901$$92017-07-04$$d2017-07-04$$ePage charges$$jZahlung erfolgt$$zUSD 1.200,-
000834972 909CO $$ooai:juser.fz-juelich.de:834972$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000834972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144811$$aForschungszentrum Jülich$$b0$$kFZJ
000834972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b1$$kFZJ
000834972 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000834972 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000834972 9141_ $$y2017
000834972 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2015
000834972 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834972 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834972 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834972 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834972 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834972 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834972 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000834972 980__ $$ajournal
000834972 980__ $$aVDB
000834972 980__ $$aI:(DE-Juel1)IBG-3-20101118
000834972 980__ $$aAPC
000834972 980__ $$aUNRESTRICTED
000834972 9801_ $$aAPC