000835030 001__ 835030
000835030 005__ 20240711101522.0
000835030 0247_ $$2doi$$a10.1115/1.4039858
000835030 0247_ $$2ISSN$$a2381-6872
000835030 0247_ $$2ISSN$$a2381-6910
000835030 0247_ $$2WOS$$aWOS:000447261700008
000835030 037__ $$aFZJ-2017-04900
000835030 082__ $$a620
000835030 1001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b0$$eCorresponding author
000835030 245__ $$aStability Issues for Fuel Cell Models in the Activation and Concentration Regimes
000835030 260__ $$aNew York, NY$$bASME$$c2018
000835030 3367_ $$2DRIVER$$aarticle
000835030 3367_ $$2DataCite$$aOutput Types/Journal article
000835030 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547480458_20255
000835030 3367_ $$2BibTeX$$aARTICLE
000835030 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835030 3367_ $$00$$2EndNote$$aJournal Article
000835030 520__ $$aCode stability is a matter of concern for three-dimensional (3D) fuel cell models operating both at high current density and at high cell voltage. An idealized mathematical model of a fuel cell should converge for all potentiostatic or galvanostatic boundary conditions ranging from open circuit to closed circuit. Many fail to do so, due to (i) fuel or oxygen starvation causing divergence as local partial pressures and mass fractions of fuel or oxidant fall to near zero and (ii) nonlinearities in the Nernst and Butler–Volmer equations near open-circuit conditions. This paper describes in detail, specific numerical methods used to improve the stability of a previously existing fuel cell performance calculation procedure, at both low and high current densities. Four specific techniques are identified. A straight channel operating as a (i) solid oxide and (ii) polymer electrolyte membrane fuel cell is used to illustrate the efficacy of the modifications.
000835030 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000835030 588__ $$aDataset connected to CrossRef
000835030 7001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b1
000835030 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b2
000835030 7001_ $$0P:(DE-HGF)0$$aJasak, H.$$b3
000835030 7001_ $$0P:(DE-Juel1)168242$$aAndersson, Martin$$b4
000835030 7001_ $$0P:(DE-HGF)0$$aPharoah, J. G.$$b5
000835030 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000835030 773__ $$0PERI:(DE-600)2866995-2$$a10.1115/1.4039858$$gVol. 15, no. 4, p. 041008 -$$n4$$p041008 -$$tJournal of electrochemical energy conversion and storage$$v15$$x2381-6872$$y2018
000835030 8564_ $$uhttps://juser.fz-juelich.de/record/835030/files/jeecs_015_04_041008.pdf$$yRestricted
000835030 8564_ $$uhttps://juser.fz-juelich.de/record/835030/files/jeecs_015_04_041008.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835030 909CO $$ooai:juser.fz-juelich.de:835030$$pVDB
000835030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b0$$kFZJ
000835030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b1$$kFZJ
000835030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b2$$kFZJ
000835030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168242$$aForschungszentrum Jülich$$b4$$kFZJ
000835030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000835030 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000835030 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000835030 9141_ $$y2018
000835030 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835030 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835030 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835030 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000835030 920__ $$lyes
000835030 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000835030 980__ $$ajournal
000835030 980__ $$aVDB
000835030 980__ $$aI:(DE-Juel1)IEK-3-20101013
000835030 980__ $$aUNRESTRICTED
000835030 981__ $$aI:(DE-Juel1)ICE-2-20101013