001     835030
005     20240711101522.0
024 7 _ |a 10.1115/1.4039858
|2 doi
024 7 _ |a 2381-6872
|2 ISSN
024 7 _ |a 2381-6910
|2 ISSN
024 7 _ |a WOS:000447261700008
|2 WOS
037 _ _ |a FZJ-2017-04900
082 _ _ |a 620
100 1 _ |a Beale, Steven
|0 P:(DE-Juel1)157835
|b 0
|e Corresponding author
245 _ _ |a Stability Issues for Fuel Cell Models in the Activation and Concentration Regimes
260 _ _ |a New York, NY
|c 2018
|b ASME
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547480458_20255
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Code stability is a matter of concern for three-dimensional (3D) fuel cell models operating both at high current density and at high cell voltage. An idealized mathematical model of a fuel cell should converge for all potentiostatic or galvanostatic boundary conditions ranging from open circuit to closed circuit. Many fail to do so, due to (i) fuel or oxygen starvation causing divergence as local partial pressures and mass fractions of fuel or oxidant fall to near zero and (ii) nonlinearities in the Nernst and Butler–Volmer equations near open-circuit conditions. This paper describes in detail, specific numerical methods used to improve the stability of a previously existing fuel cell performance calculation procedure, at both low and high current densities. Four specific techniques are identified. A straight channel operating as a (i) solid oxide and (ii) polymer electrolyte membrane fuel cell is used to illustrate the efficacy of the modifications.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reimer, Uwe
|0 P:(DE-Juel1)6697
|b 1
700 1 _ |a Froning, Dieter
|0 P:(DE-Juel1)5106
|b 2
700 1 _ |a Jasak, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Andersson, Martin
|0 P:(DE-Juel1)168242
|b 4
700 1 _ |a Pharoah, J. G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 6
773 _ _ |a 10.1115/1.4039858
|g Vol. 15, no. 4, p. 041008 -
|0 PERI:(DE-600)2866995-2
|n 4
|p 041008 -
|t Journal of electrochemical energy conversion and storage
|v 15
|y 2018
|x 2381-6872
856 4 _ |u https://juser.fz-juelich.de/record/835030/files/jeecs_015_04_041008.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835030/files/jeecs_015_04_041008.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835030
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157835
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)6697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)5106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168242
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21