001 | 835081 | ||
005 | 20240610120526.0 | ||
024 | 7 | _ | |a 10.1088/1361-6668/aa73ad |2 doi |
024 | 7 | _ | |a 0953-2048 |2 ISSN |
024 | 7 | _ | |a 1361-6668 |2 ISSN |
024 | 7 | _ | |a 2128/14933 |2 Handle |
024 | 7 | _ | |a WOS:000405068200001 |2 WOS |
024 | 7 | _ | |a altmetric:22139593 |2 altmetric |
037 | _ | _ | |a FZJ-2017-04949 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Faley, M. I. |0 P:(DE-Juel1)130633 |b 0 |e Corresponding author |
245 | _ | _ | |a High- T$_{c}$ SQUID biomagnetometers |
260 | _ | _ | |a Bristol |c 2017 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1553606930_24179 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper, we review the preparation technology, integration in measurement systems and tests of high-Tc superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Jülich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-Tc direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-Tc biomagnetic systems. We conclude by outlining future challenges. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Dammers, J. |0 P:(DE-Juel1)131757 |b 1 |
700 | 1 | _ | |a Maslennikov, Y. V. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schneiderman, J. F. |0 0000-0002-4441-2360 |b 3 |
700 | 1 | _ | |a Winkler, D. |0 0000-0001-8332-3742 |b 4 |
700 | 1 | _ | |a Koshelets, V. P. |0 0000-0002-1563-1257 |b 5 |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 6 |u fzj |
700 | 1 | _ | |a Dunin-Borkowski, R. E. |0 P:(DE-Juel1)144121 |b 7 |
773 | _ | _ | |a 10.1088/1361-6668/aa73ad |g Vol. 30, no. 8, p. 083001 - |0 PERI:(DE-600)1361475-7 |n 8 |p 083001 |t Superconductor science and technology |v 30 |y 2017 |x 1361-6668 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/835081/files/Faley_2017_Supercond._Sci._Technol._30_083001.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:835081 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130633 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131757 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SUPERCOND SCI TECH : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|