000835084 001__ 835084 000835084 005__ 20240610120527.0 000835084 0247_ $$2doi$$a10.1073/pnas.1621469114 000835084 0247_ $$2ISSN$$a0027-8424 000835084 0247_ $$2ISSN$$a1091-6490 000835084 0247_ $$2WOS$$aWOS:000405177100055 000835084 0247_ $$2altmetric$$aaltmetric:21379945 000835084 0247_ $$2pmid$$apmid:28655845 000835084 037__ $$aFZJ-2017-04952 000835084 082__ $$a000 000835084 1001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b0$$eCorresponding author 000835084 245__ $$aForce generation by groups of migrating bacteria 000835084 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2017 000835084 3367_ $$2DRIVER$$aarticle 000835084 3367_ $$2DataCite$$aOutput Types/Journal article 000835084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504772793_9618 000835084 3367_ $$2BibTeX$$aARTICLE 000835084 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000835084 3367_ $$00$$2EndNote$$aJournal Article 000835084 520__ $$aFrom colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups. 000835084 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0 000835084 588__ $$aDataset connected to CrossRef 000835084 7001_ $$0P:(DE-HGF)0$$aKoch, Matthias D.$$b1 000835084 7001_ $$0P:(DE-HGF)0$$aLiu, Guannan$$b2 000835084 7001_ $$0P:(DE-HGF)0$$aStone, Howard A.$$b3 000835084 7001_ $$0P:(DE-HGF)0$$aShaevitz, Joshua W.$$b4 000835084 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1621469114$$gVol. 114, no. 28, p. 7266 - 7271$$n28$$p7266 - 7271$$tProceedings of the National Academy of Sciences of the United States of America$$v114$$x1091-6490$$y2017 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.pdf$$yRestricted 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.gif?subformat=icon$$xicon$$yRestricted 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.jpg?subformat=icon-180$$xicon-180$$yRestricted 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.jpg?subformat=icon-640$$xicon-640$$yRestricted 000835084 8564_ $$uhttps://juser.fz-juelich.de/record/835084/files/PNAS-2017-Sabass-7266-71.pdf?subformat=pdfa$$xpdfa$$yRestricted 000835084 909CO $$ooai:juser.fz-juelich.de:835084$$pVDB 000835084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b0$$kFZJ 000835084 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0 000835084 9141_ $$y2017 000835084 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000835084 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000835084 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000835084 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000835084 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2015 000835084 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000835084 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000835084 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000835084 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000835084 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000835084 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000835084 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000835084 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000835084 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000835084 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000835084 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2015 000835084 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0 000835084 980__ $$ajournal 000835084 980__ $$aVDB 000835084 980__ $$aI:(DE-Juel1)ICS-2-20110106 000835084 980__ $$aUNRESTRICTED 000835084 981__ $$aI:(DE-Juel1)IBI-5-20200312 000835084 981__ $$aI:(DE-Juel1)IAS-2-20090406