000835085 001__ 835085
000835085 005__ 20240610120527.0
000835085 0247_ $$2doi$$a10.1088/1478-3975/aa6b67
000835085 0247_ $$2ISSN$$a1478-3967
000835085 0247_ $$2ISSN$$a1478-3975
000835085 0247_ $$2WOS$$aWOS:000404639300002
000835085 0247_ $$2altmetric$$aaltmetric:21389457
000835085 0247_ $$2pmid$$apmid:28378710
000835085 037__ $$aFZJ-2017-04953
000835085 082__ $$a530
000835085 1001_ $$0P:(DE-HGF)0$$aLembong, Josephine$$b0$$eFirst author
000835085 245__ $$aCalcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics
000835085 260__ $$aPhiladelphia, Pa.$$bIOP Publ.$$c2017
000835085 3367_ $$2DRIVER$$aarticle
000835085 3367_ $$2DataCite$$aOutput Types/Journal article
000835085 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504773042_9609
000835085 3367_ $$2BibTeX$$aARTICLE
000835085 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835085 3367_ $$00$$2EndNote$$aJournal Article
000835085 520__ $$aThe maintenance of tissue integrity is essential for the life of multicellular organisms. Healing of a skin wound is a paradigm for how various cell types localize and repair tissue perturbations in an orchestrated fashion. To investigate biophysical mechanisms associated with wound localization, we focus on a model system consisting of a fibroblast monolayer on an elastic substrate. We find that the creation of an edge in the monolayer causes cytosolic calcium oscillations throughout the monolayer. The oscillation frequency increases with cell density, which shows that wound-induced calcium oscillations occur collectively. Inhibition of myosin II reduces the number of oscillating cells, demonstrating a coupling between actomyosin activity and calcium response. The spatial distribution of oscillating cells depends on the stiffness of the substrate. For soft substrates with a Young's modulus E ~ 360 Pa, oscillations occur on average within 0.2 mm distance from the wound edge. Increasing substrate stiffness leads to an average localization of oscillations away from the edge (up to ~0.6 mm). In addition, we use traction force microscopy to determine stresses between cells and substrate. We find that an increase of substrate rigidity leads to a higher traction magnitude. For E < ~2 kPa, the traction magnitude is strongly concentrated at the monolayer edge, while for E > ~8 kPa, traction magnitude is on average almost uniform beneath the monolayer. Thus, the spatial occurrence of calcium oscillations correlates with the cell–substrate traction. Overall, the experiments with fibroblasts demonstrate a collective, chemomechanical localization mechanism at the edge of a wound with a potential physiological role.
000835085 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000835085 588__ $$aDataset connected to CrossRef
000835085 7001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b1$$eCorresponding author
000835085 7001_ $$0P:(DE-HGF)0$$aStone, Howard A$$b2
000835085 773__ $$0PERI:(DE-600)2133216-2$$a10.1088/1478-3975/aa6b67$$gVol. 14, no. 4, p. 045006 -$$n4$$p045006 -$$tPhysical biology$$v14$$x1478-3975$$y2017
000835085 8564_ $$uhttps://juser.fz-juelich.de/record/835085/files/Lembong_2017_Phys._Biol._14_045006.pdf$$yRestricted
000835085 8564_ $$uhttps://juser.fz-juelich.de/record/835085/files/Lembong_2017_Phys._Biol._14_045006.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835085 909CO $$ooai:juser.fz-juelich.de:835085$$pVDB
000835085 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b1$$kFZJ
000835085 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000835085 9141_ $$y2017
000835085 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835085 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS BIOL : 2015
000835085 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835085 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835085 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835085 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835085 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835085 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835085 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000835085 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000835085 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835085 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000835085 980__ $$ajournal
000835085 980__ $$aVDB
000835085 980__ $$aI:(DE-Juel1)ICS-2-20110106
000835085 980__ $$aUNRESTRICTED
000835085 981__ $$aI:(DE-Juel1)IBI-5-20200312
000835085 981__ $$aI:(DE-Juel1)IAS-2-20090406