000835093 001__ 835093
000835093 005__ 20210129230819.0
000835093 0247_ $$2doi$$a10.1016/j.neuroimage.2017.05.010
000835093 0247_ $$2ISSN$$a1053-8119
000835093 0247_ $$2ISSN$$a1095-9572
000835093 0247_ $$2WOS$$aWOS:000406946100033
000835093 0247_ $$2altmetric$$aaltmetric:20081900
000835093 0247_ $$2pmid$$apmid:28495637
000835093 037__ $$aFZJ-2017-04961
000835093 041__ $$aEnglish
000835093 082__ $$a610
000835093 1001_ $$0P:(DE-Juel1)162183$$aBonkhoff, Anna K.$$b0$$eCorresponding author
000835093 245__ $$aVeridical stimulus localization is linked to human area V5/MT+ activity
000835093 260__ $$aOrlando, Fla.$$bAcademic Press$$c2017
000835093 3367_ $$2DRIVER$$aarticle
000835093 3367_ $$2DataCite$$aOutput Types/Journal article
000835093 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500541978_11992
000835093 3367_ $$2BibTeX$$aARTICLE
000835093 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835093 3367_ $$00$$2EndNote$$aJournal Article
000835093 520__ $$aHow the brain represents visual space is an unsolved mystery. Spatial localization becomes particularly challenging when visual information processing is briefly disrupted, as in the case of saccadic eye movements, blinks, or visual masks. As we have recently reported, a compression of visual space, illustrated by displacements of shortly flashed stimuli, can be observed in the temporal vicinity of masking stimuli during ocular fixation (Zimmermann et al., 2013). We here aimed at investigating the neural mechanisms underlying these displacements using functional magnetic resonance imaging. On the behavioral level, we detected significant stimulus displacement when visual masks were simultaneously presented. At the neural level, we observed decreased human motion complex V5/MT+ activation associated with these displacements: When comparing trials with a perceived stimulus shift in space to trials of veridical perception of stimulus localization, human V5/MT+ was significantly less activated although no differences in perceived motion can account for this. Data suggest an important role of human V5/MT+ in the process of spatial localization of briefly presented objects and thus extend current concepts of the functions of human V5/MT+.
000835093 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000835093 588__ $$aDataset connected to CrossRef
000835093 7001_ $$0P:(DE-Juel1)145708$$aZimmermann, Eckart$$b1
000835093 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b2
000835093 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2017.05.010$$gVol. 156, p. 377 - 387$$p377 - 387$$tNeuroImage$$v156$$x1053-8119$$y2017
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.pdf$$yRestricted
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.gif?subformat=icon$$xicon$$yRestricted
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000835093 8564_ $$uhttps://juser.fz-juelich.de/record/835093/files/1-s2.0-S1053811917304020-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835093 909CO $$ooai:juser.fz-juelich.de:835093$$pVDB
000835093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162183$$aForschungszentrum Jülich$$b0$$kFZJ
000835093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b2$$kFZJ
000835093 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000835093 9141_ $$y2017
000835093 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835093 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835093 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835093 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835093 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000835093 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835093 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835093 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835093 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835093 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835093 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835093 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000835093 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000835093 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000835093 920__ $$lyes
000835093 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000835093 980__ $$ajournal
000835093 980__ $$aVDB
000835093 980__ $$aI:(DE-Juel1)INM-3-20090406
000835093 980__ $$aUNRESTRICTED