000835094 001__ 835094
000835094 005__ 20210129230819.0
000835094 0247_ $$2doi$$a10.1093/jxb/erx105
000835094 0247_ $$2ISSN$$a0022-0957
000835094 0247_ $$2ISSN$$a1460-2431
000835094 0247_ $$2Handle$$a2128/15252
000835094 0247_ $$2WOS$$aWOS:000402272700008
000835094 0247_ $$2altmetric$$aaltmetric:18907244
000835094 0247_ $$2pmid$$apmid:28383668
000835094 037__ $$aFZJ-2017-04962
000835094 041__ $$aEnglish
000835094 082__ $$a580
000835094 1001_ $$0P:(DE-HGF)0$$aGroß, Felicitas$$b0
000835094 245__ $$aCopper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana
000835094 260__ $$aOxford$$bOxford Univ. Press$$c2017
000835094 3367_ $$2DRIVER$$aarticle
000835094 3367_ $$2DataCite$$aOutput Types/Journal article
000835094 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504706854_6618
000835094 3367_ $$2BibTeX$$aARTICLE
000835094 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835094 3367_ $$00$$2EndNote$$aJournal Article
000835094 520__ $$aNitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.
000835094 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000835094 588__ $$aDataset connected to CrossRef
000835094 7001_ $$0P:(DE-HGF)0$$aRudolf, Eva-Esther$$b1
000835094 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b2$$ufzj
000835094 7001_ $$0P:(DE-HGF)0$$aDurner, Jörg$$b3
000835094 7001_ $$0P:(DE-HGF)0$$aAstier, Jeremy$$b4$$eCorresponding author
000835094 773__ $$0PERI:(DE-600)1466717-4$$a10.1093/jxb/erx105$$gVol. 68, no. 9, p. 2149 - 2162$$n9$$p2149 - 2162$$tThe journal of experimental botany$$v68$$x1460-2431$$y2017
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.pdf$$yOpenAccess
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.gif?subformat=icon$$xicon$$yOpenAccess
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000835094 8564_ $$uhttps://juser.fz-juelich.de/record/835094/files/watermark.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000835094 909CO $$ooai:juser.fz-juelich.de:835094$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000835094 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b2$$kFZJ
000835094 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000835094 9141_ $$y2017
000835094 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835094 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000835094 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000835094 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835094 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EXP BOT : 2015
000835094 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EXP BOT : 2015
000835094 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835094 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835094 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835094 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000835094 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000835094 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000835094 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835094 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000835094 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835094 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000835094 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835094 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835094 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835094 920__ $$lno
000835094 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000835094 980__ $$ajournal
000835094 980__ $$aVDB
000835094 980__ $$aUNRESTRICTED
000835094 980__ $$aI:(DE-Juel1)IBG-2-20101118
000835094 9801_ $$aFullTexts