001     835094
005     20210129230819.0
024 7 _ |a 10.1093/jxb/erx105
|2 doi
024 7 _ |a 0022-0957
|2 ISSN
024 7 _ |a 1460-2431
|2 ISSN
024 7 _ |a 2128/15252
|2 Handle
024 7 _ |a WOS:000402272700008
|2 WOS
024 7 _ |a altmetric:18907244
|2 altmetric
024 7 _ |a pmid:28383668
|2 pmid
037 _ _ |a FZJ-2017-04962
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Groß, Felicitas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504706854_6618
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rudolf, Eva-Esther
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Thiele, Björn
|0 P:(DE-Juel1)129410
|b 2
|u fzj
700 1 _ |a Durner, Jörg
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Astier, Jeremy
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1093/jxb/erx105
|g Vol. 68, no. 9, p. 2149 - 2162
|0 PERI:(DE-600)1466717-4
|n 9
|p 2149 - 2162
|t The journal of experimental botany
|v 68
|y 2017
|x 1460-2431
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/835094/files/watermark.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/835094/files/watermark.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/835094/files/watermark.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/835094/files/watermark.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:835094
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129410
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EXP BOT : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EXP BOT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21