000835100 001__ 835100
000835100 005__ 20240711101524.0
000835100 0247_ $$2doi$$a10.1016/j.apenergy.2018.02.155
000835100 0247_ $$2ISSN$$a0306-2619
000835100 0247_ $$2ISSN$$a1872-9118
000835100 0247_ $$2WOS$$aWOS:000430994500017
000835100 037__ $$aFZJ-2017-04968
000835100 082__ $$a620
000835100 1001_ $$0P:(DE-Juel1)158017$$aTjarks, Geert$$b0
000835100 245__ $$aEnergetically-optimal PEM Electrolyzer Pressure in Power-to-Gas Plants
000835100 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000835100 3367_ $$2DRIVER$$aarticle
000835100 3367_ $$2DataCite$$aOutput Types/Journal article
000835100 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524490213_31897
000835100 3367_ $$2BibTeX$$aARTICLE
000835100 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835100 3367_ $$00$$2EndNote$$aJournal Article
000835100 520__ $$aHydrogen production from renewable electricity in power-to-gas concepts is promising for future energy storage systems since hydrogen offers high energy density and can be used emission free. Economically viable power-to-gas applications require high efficiency and thus low specific energy demand of the hydrogen production. Energy is required for hydrogen production via water electrolysis, but also for gas conditioning. Gas conditioning includes mechanical gas compression to a defined storage pressure and gas drying to purify the raw hydrogen. The energy demand of gas conditioning can be reduced by operating pressurized electrolyzers. However, pressurized operation increases the energy demand of the electrolyzer. To determine the optimal operating pressure of the electrolyzer, the overall power-to-gas process has to be considered. In this paper, the energy demand of the overall power-to-gas plants is optimized considering compression and temperature swing adsorption (TSA)-drying of hydrogen. It is shown that an optimum pressure for each operating condition in the electrolyzer in relation to the efficiency exists. This optimal operating pressure depends on the current density in the stack and the hydrogen storage pressure. When operating the system with load adapted operating pressure efficiencies between 55% and 73% for the whole power-to-gas plant can be achieved.
000835100 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000835100 588__ $$aDataset connected to CrossRef
000835100 7001_ $$0P:(DE-HGF)0$$aGibelhaus, Andrej$$b1
000835100 7001_ $$0P:(DE-HGF)0$$aLanzerath, Franz$$b2
000835100 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3$$eCorresponding author
000835100 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4
000835100 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000835100 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.02.155$$gVol. 218, p. 192 - 198$$p192 - 198$$tApplied energy$$v218$$x0306-2619$$y2018
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.pdf$$yRestricted
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.gif?subformat=icon$$xicon$$yRestricted
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000835100 8564_ $$uhttps://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835100 909CO $$ooai:juser.fz-juelich.de:835100$$pVDB
000835100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000835100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000835100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000835100 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000835100 9141_ $$y2018
000835100 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000835100 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835100 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835100 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835100 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835100 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835100 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835100 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835100 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835100 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835100 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000835100 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000835100 920__ $$lyes
000835100 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000835100 980__ $$ajournal
000835100 980__ $$aVDB
000835100 980__ $$aI:(DE-Juel1)IEK-3-20101013
000835100 980__ $$aUNRESTRICTED
000835100 981__ $$aI:(DE-Juel1)ICE-2-20101013