001     835100
005     20240711101524.0
024 7 _ |a 10.1016/j.apenergy.2018.02.155
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000430994500017
|2 WOS
037 _ _ |a FZJ-2017-04968
082 _ _ |a 620
100 1 _ |a Tjarks, Geert
|0 P:(DE-Juel1)158017
|b 0
245 _ _ |a Energetically-optimal PEM Electrolyzer Pressure in Power-to-Gas Plants
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524490213_31897
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hydrogen production from renewable electricity in power-to-gas concepts is promising for future energy storage systems since hydrogen offers high energy density and can be used emission free. Economically viable power-to-gas applications require high efficiency and thus low specific energy demand of the hydrogen production. Energy is required for hydrogen production via water electrolysis, but also for gas conditioning. Gas conditioning includes mechanical gas compression to a defined storage pressure and gas drying to purify the raw hydrogen. The energy demand of gas conditioning can be reduced by operating pressurized electrolyzers. However, pressurized operation increases the energy demand of the electrolyzer. To determine the optimal operating pressure of the electrolyzer, the overall power-to-gas process has to be considered. In this paper, the energy demand of the overall power-to-gas plants is optimized considering compression and temperature swing adsorption (TSA)-drying of hydrogen. It is shown that an optimum pressure for each operating condition in the electrolyzer in relation to the efficiency exists. This optimal operating pressure depends on the current density in the stack and the hydrogen storage pressure. When operating the system with load adapted operating pressure efficiencies between 55% and 73% for the whole power-to-gas plant can be achieved.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gibelhaus, Andrej
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lanzerath, Franz
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 3
|e Corresponding author
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
773 _ _ |a 10.1016/j.apenergy.2018.02.155
|g Vol. 218, p. 192 - 198
|0 PERI:(DE-600)2000772-3
|p 192 - 198
|t Applied energy
|v 218
|y 2018
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835100/files/1-s2.0-S0306261918302897-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835100
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21