000835104 001__ 835104
000835104 005__ 20240711101528.0
000835104 0247_ $$2doi$$a10.1016/j.jpowsour.2018.05.065
000835104 0247_ $$2ISSN$$a0378-7753
000835104 0247_ $$2ISSN$$a1873-2755
000835104 0247_ $$2WOS$$aWOS:000438001800027
000835104 037__ $$aFZJ-2017-04972
000835104 082__ $$a620
000835104 1001_ $$0P:(DE-Juel1)168338$$aXu, Liangfei$$b0$$eCorresponding author
000835104 245__ $$aInteractions between a Polymer Electrolyte Membrane Fuel Cell and Boost Converter Based on Multiscale Model
000835104 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000835104 3367_ $$2DRIVER$$aarticle
000835104 3367_ $$2DataCite$$aOutput Types/Journal article
000835104 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547563750_20785
000835104 3367_ $$2BibTeX$$aARTICLE
000835104 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835104 3367_ $$00$$2EndNote$$aJournal Article
000835104 520__ $$aIn a fuel cell vehicle, a direct current boost converter (DCC) is required to link a polymer electrolyte membrane fuel cell system (FCS) and lithium battery packages. The DCC is installed to regulate the output power of the FCS, and can be controlled in different ways, via current, voltage, or power modes. Interactions between a DCC and FCS have attracted growing interests in recent years, because they affect dynamic and stable performances of the entire system. This paper outlines a simulation study on interactions between high-frequency switching operations of a DCC and internal states of an FCS based on a multiscale model. Results are as follows. (1) High-frequency switching operations have a major influence on the cathode overpotential, voltage ohmic loss and water transport through the membrane, whereas the influence on the partial pressures of gas species inside the stack is slight. (2) The FCS is more stable in the case of membrane dehydration than in that of water flooding. DCC's control mode has a greater influence on the FCS when water flooding occurs than membrane dehydration. The power control mode is the most unstable of the three, whereas the current control mode is the most stable.
000835104 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000835104 588__ $$aDataset connected to CrossRef
000835104 7001_ $$0P:(DE-HGF)0$$aHong, Po$$b1
000835104 7001_ $$0P:(DE-HGF)0$$aFang, Chuan$$b2
000835104 7001_ $$0P:(DE-HGF)0$$aCheng, Siliang$$b3
000835104 7001_ $$0P:(DE-HGF)0$$aHu, Junming$$b4
000835104 7001_ $$0P:(DE-HGF)0$$aLi, Jianqiu$$b5
000835104 7001_ $$0P:(DE-HGF)0$$aOuyang, Minggao$$b6
000835104 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b7
000835104 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.05.065$$gVol. 395, p. 237 - 250$$p237 - 250$$tJournal of power sources$$v395$$x0378-7753$$y2018
000835104 8564_ $$uhttps://juser.fz-juelich.de/record/835104/files/1-s2.0-S0378775318305494-main.pdf$$yRestricted
000835104 8564_ $$uhttps://juser.fz-juelich.de/record/835104/files/1-s2.0-S0378775318305494-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835104 909CO $$ooai:juser.fz-juelich.de:835104$$pVDB
000835104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168338$$aForschungszentrum Jülich$$b0$$kFZJ
000835104 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b7$$kFZJ
000835104 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b7$$kRWTH
000835104 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000835104 9141_ $$y2018
000835104 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000835104 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835104 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835104 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835104 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835104 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835104 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835104 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835104 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835104 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835104 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000835104 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000835104 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000835104 920__ $$lyes
000835104 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000835104 980__ $$ajournal
000835104 980__ $$aVDB
000835104 980__ $$aI:(DE-Juel1)IEK-3-20101013
000835104 980__ $$aUNRESTRICTED
000835104 981__ $$aI:(DE-Juel1)ICE-2-20101013