001     835104
005     20240711101528.0
024 7 _ |a 10.1016/j.jpowsour.2018.05.065
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000438001800027
|2 WOS
037 _ _ |a FZJ-2017-04972
082 _ _ |a 620
100 1 _ |a Xu, Liangfei
|0 P:(DE-Juel1)168338
|b 0
|e Corresponding author
245 _ _ |a Interactions between a Polymer Electrolyte Membrane Fuel Cell and Boost Converter Based on Multiscale Model
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547563750_20785
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In a fuel cell vehicle, a direct current boost converter (DCC) is required to link a polymer electrolyte membrane fuel cell system (FCS) and lithium battery packages. The DCC is installed to regulate the output power of the FCS, and can be controlled in different ways, via current, voltage, or power modes. Interactions between a DCC and FCS have attracted growing interests in recent years, because they affect dynamic and stable performances of the entire system. This paper outlines a simulation study on interactions between high-frequency switching operations of a DCC and internal states of an FCS based on a multiscale model. Results are as follows. (1) High-frequency switching operations have a major influence on the cathode overpotential, voltage ohmic loss and water transport through the membrane, whereas the influence on the partial pressures of gas species inside the stack is slight. (2) The FCS is more stable in the case of membrane dehydration than in that of water flooding. DCC's control mode has a greater influence on the FCS when water flooding occurs than membrane dehydration. The power control mode is the most unstable of the three, whereas the current control mode is the most stable.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hong, Po
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fang, Chuan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Cheng, Siliang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hu, Junming
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Jianqiu
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ouyang, Minggao
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 7
773 _ _ |a 10.1016/j.jpowsour.2018.05.065
|g Vol. 395, p. 237 - 250
|0 PERI:(DE-600)1491915-1
|p 237 - 250
|t Journal of power sources
|v 395
|y 2018
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/835104/files/1-s2.0-S0378775318305494-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/835104/files/1-s2.0-S0378775318305494-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835104
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21