000835110 001__ 835110
000835110 005__ 20240709094454.0
000835110 037__ $$aFZJ-2017-04978
000835110 041__ $$aEnglish
000835110 1001_ $$0P:(DE-Juel1)159558$$aSpilker, Benjamin$$b0$$eCorresponding author$$ufzj
000835110 1112_ $$a15th Annual Meeting on Nuclear Technology$$cBerlin$$d2015-05-04 - 2015-05-07$$wGermany
000835110 245__ $$aSurface Finish Influence on the Thermal Shock Performance of Beryllium
000835110 260__ $$c2015
000835110 3367_ $$033$$2EndNote$$aConference Paper
000835110 3367_ $$2DataCite$$aOther
000835110 3367_ $$2BibTeX$$aINPROCEEDINGS
000835110 3367_ $$2DRIVER$$aconferenceObject
000835110 3367_ $$2ORCID$$aLECTURE_SPEECH
000835110 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1714576483_3947$$xAfter Call
000835110 520__ $$aBeryllium with varying surface conditions is exposed to fusion relevant transient heat pulses. The TGP-56FW beryllium samples are ground with silicon carbide papers of increasing grit designation from P80 to P320 to simulate the industrial lathe cut surface conditions for the ITER first wall armour tiles. Up to 1000 heat pulses with a pulse duration of 1 ms and an absorbed power density of 800 MW/m² are applied using the electron beam facility JUDITH 1 at room temperature to test the thermal shock performance of the target samples. Surface characterization and metallographic cross sections show that the resulting material damage is similar for all surface conditions. The arithmetic mean roughness is increasing but the crack parameters remain unchanged for all surface conditions in the range of 100 to 1000 pulses. This study suggests that there is no need for additional surface treatments such as grinding of the industrial cut beryllium armour tiles to improve the thermal shock resistance.
000835110 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000835110 7001_ $$0P:(DE-Juel1)129747$$aLinke, Jochen$$b1$$ufzj
000835110 7001_ $$0P:(DE-Juel1)129811$$aWirtz, Marius$$b2$$ufzj
000835110 909CO $$ooai:juser.fz-juelich.de:835110$$pVDB
000835110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159558$$aForschungszentrum Jülich$$b0$$kFZJ
000835110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b1$$kFZJ
000835110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129811$$aForschungszentrum Jülich$$b2$$kFZJ
000835110 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000835110 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000835110 980__ $$aconf
000835110 980__ $$aVDB
000835110 980__ $$aI:(DE-Juel1)IEK-2-20101013
000835110 980__ $$aUNRESTRICTED
000835110 981__ $$aI:(DE-Juel1)IMD-1-20101013