000835135 001__ 835135
000835135 005__ 20240619083540.0
000835135 037__ $$aFZJ-2017-05003
000835135 041__ $$aGerman
000835135 1001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b0$$eCorresponding author$$ufzj
000835135 1112_ $$cWuppertal$$wGermany
000835135 245__ $$aRole of thermophoresis in the ‚Origin-of-Life‘$$f2017-07-17 - 
000835135 260__ $$c2017
000835135 3367_ $$033$$2EndNote$$aConference Paper
000835135 3367_ $$2DataCite$$aOther
000835135 3367_ $$2BibTeX$$aINPROCEEDINGS
000835135 3367_ $$2ORCID$$aLECTURE_SPEECH
000835135 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1500881793_6040$$xInvited
000835135 3367_ $$2DINI$$aOther
000835135 502__ $$cUni Wuppertal
000835135 520__ $$aFormamide is of special interest in the 'origin-of-life' concept as it forms a number of prebiotic molecules under catalytic conditions and at sufficiently high concentrations [1]. For nucleotides and short DNA strands, numerical finite-element calculations have shown that a high degree of accumulation in hydrothermal pores occurs [2]. Using thermophoretic data of the formamide/water system measured with Infra-Red Thermal Diffusion Forced Rayleigh Scattering, we show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations high enough to initiate synthesis of prebiotic nucleobases. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behaviour of formamide. Starting with a formamide concentration of 10-3 wt%, estimated to be typical in shallow lakes on early earth [3], the accumulation-fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of approximately 85 wt% at large aspect ratios [4].  Time dependent studies show that these high concentrations are reached after 45-90 days. To understand the dependence of the accumulation on pore geometry, we derived a heuristic model to illuminate the process.[1] Pino, S.; Sponer, J. E.; Costanzo, G.; Saladino, R. and Di Mauro, E.; Life, 5, 372-384, 2015. [2] Baaske, P.; Weinert, F. M.; Duhr, S.; Lemke, K. H.; Russell, M. J. and Braun,D.; Proc. Natl. Acad. Sci. USA, 104, 9346-9351, 2007.[3] Miyakawa, S.; Cleaves, H. J. and Miller, S. L.; Origins Life Evol. Biosphere, 32, 195-208, 2002.[4] Niether, D.; Afanasenkau, D.; Dhont, J.K.G.; Wiegand, S.; Proc. Natl. Acad. Sci. USA, 113, 4272–4277, 2016.
000835135 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000835135 909CO $$ooai:juser.fz-juelich.de:835135$$pVDB
000835135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b0$$kFZJ
000835135 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000835135 9141_ $$y2017
000835135 920__ $$lyes
000835135 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000835135 980__ $$atalk
000835135 980__ $$aVDB
000835135 980__ $$aI:(DE-Juel1)ICS-3-20110106
000835135 980__ $$aUNRESTRICTED