000835194 001__ 835194
000835194 005__ 20210129230833.0
000835194 0247_ $$2doi$$a10.1016/j.geoderma.2017.07.004
000835194 0247_ $$2ISSN$$a0016-7061
000835194 0247_ $$2ISSN$$a1872-6259
000835194 0247_ $$2WOS$$aWOS:000409291000011
000835194 037__ $$aFZJ-2017-05048
000835194 041__ $$aEnglish
000835194 082__ $$a550
000835194 1001_ $$0P:(DE-HGF)0$$aMeyer, N.$$b0$$eCorresponding author
000835194 245__ $$aCarbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow
000835194 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000835194 3367_ $$2DRIVER$$aarticle
000835194 3367_ $$2DataCite$$aOutput Types/Journal article
000835194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501141734_26447
000835194 3367_ $$2BibTeX$$aARTICLE
000835194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835194 3367_ $$00$$2EndNote$$aJournal Article
000835194 520__ $$aSpatial controls of soil organic carbon (SOC) turnover are not well understood. We hypothesized that spatialpatterns of SOC turnover are related to carbon (C) saturation rather than to the size of measurable SOC-poolssuch as particulate organic matter (POM), determined as SOC in particle-size fractions. Therefore, we repeatedlygrid-sampled a field after one, three, seven, and eleven years under bare fallow management, which revealed aspatial gradient from high to low degrees of C saturation. We measured the contents of SOC and the contents ofSOC in coarse sand-size (2000–250 μm, POM1), fine sand-size (250–53 μm, POM2), silt-size (53–20 μm, POM3),and fine silt to clay-size fractions (nonPOM,< 20 μm), calculated the degree of C saturation from texturalproperties and nonPOM contents, and related these parameters to SOC losses. In the first year of bare fallow, thesoil contained on average 12.1 g SOC kg−1, of which 0.6 g kg−1, 1.7 g kg−1, and 2.1 g kg−1 were lost afterthree, seven, and eleven years of bare fallow, respectively. The SOC losses within eleven years were spatiallyvariable and varied between 1% and 46% relative to the initial SOC content. In support of our hypothesis, SOClosses were largest at subsites with largest degrees of C saturation (R2 =0.83). Although the POM fractionsdeclined most drastically, they only comprised 4 to 9% of bulk SOC, and they did neither correlate with norexplain spatial patterns of SOC losses. We conclude that the concept of C saturation is superior to conventionalphysical fractionation approaches for predicting spatio-temporal patterns of SOC turnover at sites with a highdegree of C saturation.
000835194 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000835194 588__ $$aDataset connected to CrossRef
000835194 7001_ $$0P:(DE-HGF)0$$aBornemann, L.$$b1
000835194 7001_ $$0P:(DE-HGF)0$$aWelp, G.$$b2
000835194 7001_ $$0P:(DE-Juel1)165137$$aSchiedung, Henning$$b3$$ufzj
000835194 7001_ $$0P:(DE-Juel1)129469$$aHerbst, Michael$$b4$$ufzj
000835194 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b5$$ufzj
000835194 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.07.004$$gVol. 306, p. 89 - 98$$p89 - 98$$tGeoderma$$v306$$x0016-7061$$y2017
000835194 8564_ $$uhttps://juser.fz-juelich.de/record/835194/files/meyer_geoderma_2017.pdf$$yRestricted
000835194 909CO $$ooai:juser.fz-juelich.de:835194$$pVDB:Earth_Environment$$pVDB
000835194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165137$$aForschungszentrum Jülich$$b3$$kFZJ
000835194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129469$$aForschungszentrum Jülich$$b4$$kFZJ
000835194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b5$$kFZJ
000835194 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000835194 9141_ $$y2017
000835194 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835194 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000835194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835194 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835194 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835194 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835194 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835194 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000835194 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000835194 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835194 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000835194 980__ $$ajournal
000835194 980__ $$aVDB
000835194 980__ $$aI:(DE-Juel1)IBG-3-20101118
000835194 980__ $$aUNRESTRICTED