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A new approach to Darwin or magnetoinductive plasma simulation is presented, which combines a

mesh-free field solver with a robust time-integration scheme avoiding numerical divergence errors

in the solenoidal field components. The mesh-free formulation employs an efficient parallel

Barnes-Hut tree algorithm to speed up the computation of fields summed directly from the par-

ticles, avoiding the necessity of divergence cleaning procedures typically required by particle-in-

cell methods. The time-integration scheme employs a Hamiltonian formulation of the Lorentz

force, circumventing the development of violent numerical instabilities associated with time differ-

entiation of the vector potential. It is shown that a semi-implicit scheme converges rapidly and is

robust to further numerical instabilities which can develop from a dominant contribution of the vec-

tor potential to the canonical momenta. The model is validated by various static and dynamic

benchmark tests, including a simulation of the Weibel-like filamentation instability in beam-plasma

interactions. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994705]

I. INTRODUCTION

The full electromagnetic description of plasma is a com-

putationally intensive endeavor governed by the hyperbolic

character of Maxwell’s equations, and the associated need to

resolve light waves on a spatial grid. However, for scenarios

dominated by slowly evolving processes where electromag-

netic wave propagation can be neglected, Maxwell’s equa-

tions can be simplified into a form more suitable for

following collective phenomena on longer time scales. The

Darwin or magnetoinductive limit of Maxwell’s equations is

one such approach which achieves this compromise, and is

obtained by neglecting the transversal (otherwise known as

solenoidal, or divergence-free) contribution of the displace-

ment current in Ampère’s law. This omission turns the char-

acteristic hyperbolic structure of Maxwell’s equations into

an elliptic system, such that the Courant-Friedrichs-Lewy

(CFL) condition for the time step, namely Dt < Dx/c, where

Dx and c are the grid space and the speed of light, respec-

tively, does not need to be satisfied, leaving more scope for

using larger time steps.

Darwin models are unfortunately not so simple to imple-

ment. To date, many authors have developed and worked with

Darwin particle-in-cell (PIC) simulations with mixed success. In

their pioneering paper, Nielsen & Lewis1 showed that any

attempt to derive the solenoidal field Esol via the time derivative

of the vector potential (Lagrangian derivative) is not consistent

with the Darwin limit and causes violent numerical instabilities.

In fact, a direct approach to the evaluation of Esol reintroduces

electromagnetic radiation through mutually inductive currents

which in principle have been neglected. This obstacle can be

overcome by deploying moments of the Vlasov equation to

eliminate explicit time-derivatives, which yields instead a ellipti-

cal equation for Esol, the solution of which needs additional

“divergence cleaning” techniques to enforce the Coulomb gauge

condition r� A.2,3 Other authors have proposed Vlasov-Darwin

models,4,5 including a charge-conserving implementation,6

which present additional challenges for multi-dimensional prob-

lems with complex boundary conditions.

Recently, Masek & Gibbon7 proposed a proof-of-principle

mesh-free formulation of a three-dimensional Darwin model

which behaved satisfactorily for simple test cases, but ran into

difficulties for more general scenarios in which arbitrarily

strong vector potentials were permitted. Nevertheless, the

mesh-free approach does offer some significant advantages

compared to traditional grid-based codes, which motivate the

present quest for a more robust algorithm. For example, in

high-density plasmas, Coulomb collisions become significant,

which in principle can be included directly through a mesh-

free approach, rather than via an ad-hoc Monte-Carlo scatter-

ing operator as is common in PIC methods. For collisionless

plasmas, the absence of a grid removes aliasing instabilities

(and their associated numerical heating) by design, permitting

the simulation of initially cold plasmas. A gridless method is

also intrinsically adaptive and naturally offers more flexible

boundary conditions,8 including, for example, truly open (vac-

uum) boundaries for modeling isolated systems.

As a first step towards the development of a robust

three-dimensional code, we present a mesh-free two-dimen-

sional Darwin formulation combined with a Hamiltonian

integration time scheme. This approach circumvents the use

of Esol in the particle integrator, employing instead gradients

of a divergence-free vector potential.

This paper is organized as follows: first, in Sec. II, the

classical Darwin approximation is introduced. This serves as

the basis for a new two-dimensional formulation proposed in

Sec. III, including a special formulation of the scalar and
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vector potentials consistent with a finite-size particle density

profile. We then discuss the direct solution of the Darwin

field equations via a Barnes-Hut tree algorithm, permitting a

rapid OðN log NÞ summation, just as for purely electrostatic

systems. The integration scheme adopted is described in Sec.

IV; it is a stable integrator, implicit in space and explicit in

velocity. Finally, we validate the model with various bench-

mark tests. The first of these examines the accuracy of the

field solver in a cylindrical plasma having uniform density.

Dynamic tests on Langmuir waves and vacuum beam propa-

gation validate the robustness and accuracy of the integration

scheme. Finally, the well-known Weibel-like filamentation

instability in high-density plasma is examined, comparing

results with previous grid-based models.

II. MAXWELL’S EQUATIONS

In this section, we briefly recap on the formulation of

Maxwell’s equations according to the Darwin or magnetoin-

ductive model, the description followed is the same as in pre-

vious works.1–3,7,9 A key procedure is the use of Helmholtz’s

theorem, which states that any vector can be decomposed

into irrotational and solenoidal parts. For instance, the elec-

tric field E ¼ Eirr þ Esol. Therefore, we can rewrite the

Maxwell’s equation as follows:

r � Eirr ¼ 4pq; (1)

r� Esol ¼ �
1

c

@B

@t
; (2)

r � B ¼ 0; (3)

(4)

The Darwin model neglects the solenoidal component of the

displacement current in Ampère’s Law and consequently

presupposes that information is transmitted instantaneously.

This is because the hyperbolic nature of Maxwell’s equations

is replaced by an elliptic system which neglects electromag-

netic wave propagation. In fact, it is possible to rewrite Eqs.

(1)–(4) in the Coulomb gauge (r� A¼ 0) in the form of two

Poisson-like equations

r2u ¼ �4pq; (5)

r2A ¼ �
4p

c
Jsol; (6)

where the fields can be recovered from

E ¼ Eirr þ Esol; (7)

Eirr ¼ �ru; (8)

Jsol ¼ Jþ
1

4p

@Eirr

@t
¼ J� Jirr; (9)

B ¼ r� A: (10)

It is worth noting here that in general, Amperè’s law is not

gauge invariant,9 a fact that will influence our formulation of

the model vector potential in Sec. III.

III. 2D DARWIN MODEL FOR FINITE-SIZED PARTICLES

In principle, particles in an N-body system can be

treated as point charges10,11 and then modeled by a Dirac

delta function. Numerically, this is impractical because it

introduces divergences in the scalar and vector potentials,

which become rapidly unmanageable for the integration

scheme. We can circumvent this issue by employing a

smooth particle profile, as frequently deployed in astrophysi-

cal models.12 Concretely, we need a simple particle’s model

so that we are able to analytically solve the Maxwell-Darwin

system of equations. Therefore, the profile proposed is a

radially symmetric shape function,13 defined as

Se xð Þ ¼
e2

p jjxjj2 þ e2
� �2

; (11)

lim
e!0

SeðxÞ ¼ dðxÞ; (12)

where the parameter e is a smoothing parameter, which can

be tuned to control the collisionality. The function Se is cho-

sen as the Plummer profile and it is straightforward to show

that this function tends to Dirac delta function when e

becomes zero. Higher-order shape functions are in principle

possible, but make the subsequent derivation of the vector

potential mathematically more complex. Previous experience

with electrostatic mesh-free implementations14–16 has shown

that the above particle profile can be deployed in both colli-

sional and collisionless regimes, motivating the retention of

this analytically convenient choice for the present Darwin

model. For the collisionless systems of primary interest here,

it suffice to ensure that e � �a, where �a is the mean interpar-

ticle spacing. In a statistical sense, e plays an analogous role

to the grid spacing in PIC codes, which typically call for

“many particles per cell or Debye length.” Here, the analogy

stops though: in our method, there is no requirement that e

� kD for preventing numerical heating.

In the following analysis, we will simplify the formulas

with the substitution, r2ij ¼ kxi � xjk
2
.

We identify two sources in the coupled system 5–6,

which are the density q and the solenoidal part of the current

density Jsol. We first define the density

q xið Þ ¼
X

j6¼i

qjSe xi � xjð Þ ¼
X

j 6¼i

qje
2=p

r2ij þ e2
� �2

: (13)

Substituting the definition of density in the continuity equa-

tion, the corresponding current density is, for a set of mobile

particles, expressed by

J xið Þ ¼
X

j 6¼i

qjvjSe xi � xjð Þ ¼
X

j 6¼i

qjvje
2=p

r2ij þ e2
� �2

: (14)

Our initial aim is to analytically solve the system 5–6

employing the Plummer profile in an unbound domain. This

approach has two goals: the first is to develop an efficient

method using open boundary conditions, and secondly to
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retain sufficient flexibility to include periodic boundary con-

ditions. To proceed, we employ the Green’s function method

to solve the Poisson equation, which allows us to use an

unbound domain without a particular issue.

In two dimensions, the Green’s function is

G x; x0ð Þ ¼
1

4p
log kx� x0k2

� �

þ h; (15)

where h is a harmonic function. First, we solve the following

system:

r2u ¼ �4pq; (16)

r2Â ¼ �
4p

c
J; (17)

uðxiÞ ¼ �4pqðxiÞ � Gðxi; x
0Þ ¼ �

X

j6¼i

qj log ðr
2
ij þ e2Þ; (18)

Â xið Þ ¼ �
4p

c
J xið Þ � G xi; x

0ð Þ ¼ �
1

c

X

j 6¼i

qjvj log r2ij þ e2
� �

:

(19)

From these quantities, it is straightforward to write down the

electric and magnetic vector fields

Eirr xið Þ ¼ �ru ¼ 2
X

j 6¼i

qj
xi � xj

r2ij þ e2
; (20)

B xið Þ ¼ r � Â ¼ �
2

c

X

j 6¼i

qj
xi � xjð Þ � vj

r2ij þ e2
: (21)

We employ Â only for the sake of evaluation of B. In fact, Â

is not solenoidal and does not satisfy Eq. (6). Although the

vector potential A satisfies a Poisson-like equation, the inte-

gration of its equation in two dimensions leads to diverging

terms using the Green’s function method. In fact, we can

write the solenoidal current density7 as

Jsol ¼
1

4p
r�r� J xið Þ � G xi; x

0ð Þ
� �

: (22)

Therefore, by inverting the Laplacian in Eq. (6), we obtain

A ¼ �
4p

c
Jsol xið Þ � G xi; x

0ð Þ: (23)

The double convolution Gðxi; x
0Þ � Gðxi; x

0Þ in R2 yields

diverging terms. To circumvent this issue, we propose an

alternative method, which starts from the Coulomb gauge con-

dition. In fact, since A is solenoidal, it must be a curl of some

vector, so thatr� A¼ 0. We make the following assumption:

A xið Þ ¼
1

2c

X

j 6¼i

qjr� f r2ij

� �

xi � xjð Þ � vj

h i

: (24)

Hence, the vector ðxi � xjÞ � vj is parallel to B, which has

only the z component in two dimensions, it is mapped in the

plane x – y by applying the curl operator (Fig. 1). We assume

f to be a radially symmetric function. Since the other fields

possess this property, it is reasonable to assume the same for

A, which also simplifies its evaluation. In order that the

Maxwell-Darwin limit is consistent, the curl of Eq. (24)

must match Eq. (21), which yields a second order differential

equation for f and rij as dependent and independent variables,

respectively. These arguments lead to the following function

satisfying the above-mentioned differential equation

f r2ij

� �

¼ 2�
e2

r2ij
log

r2ij

e2
þ 1

� �

� log
r2ij

e2
þ 1

� �

; (25)

f 0 r2ij

� �

¼
1

r2ij

e2

r2ij
log

r2ij

e2
þ 1

� �

� 1

" #

: (26)

Thus, the vector potential takes the form

A xið Þ ¼
1

2c

X

j 6¼i

qjr� f r2ij

� �

xi � xjð Þ � vj

h i

¼
1

2c

X

j 6¼i

qjf r2ij

� �

vj þ
1

c

X

j 6¼i

qjf
0 r2ij

� � xi � xj

kxi � xjk

� vj �
xi � xj

kxi � xj tð Þk

� 	

: (27)

It is straightforward to verify that the vector potential Eq.

(27) reverts to the (2D) point particle vector potential for

e ! 0þ

Ad xið Þ ¼ �
1

2c

X

j 6¼i

qj vj log r2ij

� �

þ xi � xjð Þ � vjð Þ
xi � xj

r2ij

� 	

:

(28)

It is worth mentioning that the choice of Eq. (25) has other

important properties, in fact, it guarantees that A does not

diverge when rij ! 0þ and the vector potential has indeed an

upper bound

A xið Þ �
1

2c
N 1� 2 log e½ �max

j
qjvjð Þ; (29)

where N is the number of particles.

In many applications in plasma, a two-dimensional

approach in space and three-dimensional in velocity is more

realistic. For completeness, we also report here a

FIG. 1. Vector potential sketch, two-dimensional in both space and velocity

(2D2V). Under this assumption, B ¼ Bzk ¼ r� A ¼ r� ðAxiþ AyjÞ.
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modification in the vector potential. Indeed, the definitions

(13)–(21) and the transversal components of (27) remain

unchanged when we introduce a correction in the longitudinal

component of A to obtain the so-called 2D3V model (Fig. 2)

Az xið Þ ¼ �
1

c

X

j 6¼i

qjvzj log r2ij þ e2
� �

¼ Âz xið Þ: (30)

We employ this model in Sec. V, where we perform the vali-

dation of the model for a beam–plasma interaction.

A. Field approximation

We have derived the analytic solution of the scalar and

vector potentials, consistent with a finite-sized particle shape

suitable for dynamic N-body simulations, but it turns out that

the computational cost needed to compute the pair particle

interaction is O(N2), where N is the number of particles.19,20

Since we strive for a large number of particles for good sta-

tistics, a direct approach is computationally inefficient.

However, we can have a good approximation of the fields

using, for instance, a Barnes-Hut tree algorithm. This algo-

rithm yields an approximate solution with a reasonable com-

putational cost OðN logNÞ and with controlled errors.

The Barnes-Hut tree algorithm is extensively described

elsewhere,12,19,20 but for completeness, we provide a brief

description here. The first step consists of introducing a data

structure (quad-tree in 2D; oct-tree in 3D), where each node

of the tree may contain one or more particles within a square

box of side s. To approximate the summations, a so-called

multipole acceptance criterion (MAC) is used to systemati-

cally group distant particles together into pseudoparticles

(Fig. 3). One particularly intuitive MAC is the original

Barnes-Hut criterion

hc ¼ s=d < h: (31)

For opening angles s/d smaller than h, the pseudoparticle

cluster is included in the local sum, whereas for larger

angles, the node is subdivided into its child nodes, which are

then recursively retested. Clearly, the larger the choice of h,

the faster the force summation will proceed at the cost of a

larger error. A good compromise for h lies within the interval

[0.3, 0.7], which will yield errors well below 1%, as we

show later in Sec. V.

In order to improve the accuracy of the summations, we

have calculated the Taylor expansion of the far fields (inter-

action particle-pseudoparticle) up to the second order. The

present Darwin model is implemented within the parallel

treecode framework PEPC.17,18

IV. HAMILTONIAN FORMULATION

The present mesh-free formulation of the Darwin model

avoids the usual Lagrangian formulation of the Lorentz

equation. As already mentioned in other articles,1,7 this

approach normally leads to numerical instabilities. As

already explained, due to the Darwin approximation, we can-

not use Esol¼ –@A/@t in the Lorentz equation, because we

would implicitly re-introduce retardations that we have

neglected in Ampère law. Hence, a Lagrangian formulation

is no longer consistent in this context. One way around this

is to employ instead a Hamiltonian formulation of the

Lorentz equation

dpi
dt

¼ qi Eirr xið Þ þ Esol xið Þ þ
1

c
vi � B xið Þ

� 	

: (32)

We indicate with pi¼micivi the momentum of the i-th parti-

cle. The Lagrangian at the coordinate xi of the i-th particle

subjected to an external electromagnetic field is

Li ¼ �
mic

2

ci
� qiu xið Þ þ

qi

c
vi � A xið Þ: (33)

We also define the generalized canonical momentum of the

i-th particle, associated to the Lagrangian Li as

Pi ¼
@Li

@vi
¼ micivi þ

qi

c
A xið Þ: (34)

In terms of the canonical momentum, we compute the

Hamiltonian associated with the i-th particle as

Hiðxi;PiÞ ¼ Pi � vi � Li ¼ micic
2 þ qiuðxiÞ: (35)

FIG. 2. Vector potential, schematic visualisation of the modified fields in the

2D3V geometry. It allows the development of a current along the z axis

which yields a magnetic field in the plane x-y.

FIG. 3. Barnes-Hut acceptance criteria.
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We then obtain the equations which govern the motion of the

particles, subjected to magnetoinductive forces1

_xi ¼
@Hi

@Pi

¼
1

mici
Pi �

qi

c
A xið Þ

� 	

¼ vi; (36)

_Pi ¼ �
@Hi

@xi
¼ �qiru xið Þ þ

qi

c
r A xið Þ � vi
� �

: (37)

Similarly to what we have done for a single particle, we

define the Lagrangian and Hamiltonian for a system of mutu-

ally interacting particles

L ¼
X

i

�
mic

2

ci
�
1

2
qiu xið Þ þ

1

2c
qivi � A xið Þ

" #

; (38)

H ¼
X

i

Pi � vi � L

¼
X

i

micic
2 þ

1

2

X

i

qiu xið Þ þ
1

2c

X

i

qivi � A xið Þ: (39)

As mentioned before, the Hamiltonian formulation requires

the adoption of an implicit integration scheme due to the cor-

relation between the canonical momentum and the vector

potential; in other words, the Hamiltonian is not fully

separable

Hiðxi;PiÞ ¼ T iðxi;PiÞ þ V iðxiÞ; (40)

where T i; V i are, respectively, the kinetic and potential ener-

gies of the i-th particle.

The numerical scheme we introduce is effectively a

semi-implicit Asymmetrical Euler method (AEM), which is

a first order in time scheme, which consists of taking explicit

velocity and implicit coordinate. This choice is motivated by

the fact that if the vector potential becomes too strong, an

implicit velocity in the numerical scheme may lead to

numerical instability. In fact, under the condition of a strong

vector potential, we might simplify Eq. (37)

_Pi ¼
d

dt
ci
dxi

dt

� �

þ
qi

c

dAi

dt
	 0 	 ci

d2xi

dt2
þ b

dxi

dt
: (41)

Necessarily, b � ci, and discretizing Eq. (41) with a second

order centered scheme leads to numerical instabilities.

According to Ref. 22, it is possible to prevent the formation

of numerical instabilities by discretizing the second term in

Eq. (41) with a backward scheme. Consequently, this trick

implies the choice of taking explicit velocity in the discre-

tized Hamiltonian Eqs. (36) and (37), which thus becomes

xnþ1
i ¼ xni þ Dtvni ; (42)

Pnþ1
i ¼ Pn

i þ qiDt �runþ1
i þ

1

c
r Anþ1

i � vni
� �

� 	

: (43)

Therefore, Eq. (42) is not coupled to the momentum equa-

tion, Eq. (43), rather it is given explicitly. This implies that

Eq. (43) might be computed in an explicit fashion, by

updating the fields at the new particles’ positions. The

method presented is a good compromise between computa-

tional costs and conservation of the first integrals of the

motion. On the other hand, there is also ample scope for

improving the latter by adopting higher order time integra-

tion schemes.27

V. NUMERICAL RESULTS

In this section, we focus our attention on the validation

of the model described in Secs. III and IV. The validation is

organized in four physical test cases: the first is a static elec-

tron beam with cylindrical symmetry. The second test is a

simple Langmuir wave with the magnetic field being

neglected. This is followed by a dynamic test involving both

electrostatic and magnetic fields using the expansion of

cylindrically symmetric electron beam. Finally, we examine

the filamentation instability of an electron beam penetrating

the plasma.

A. Static electron beam

The first test case we consider is a static electron beam

with uniform density in a disc, where an analytic solution is

known.23 The goals of this test are to study the precision of

the field solver. Two calculations are shown, N1 and N2,

respectively, with 4� 104 and 25� 104 particles distributed

in a disc having radius r0¼ 0.2 c/xpe. The beam has an initial

longitudinal velocity vz¼ 0.4 c. We compare the electric and

magnetic fields and current density with the corresponding

theoretical solution. Given a current I ¼ nvzpr
2
0 , for the

above configuration, the theoretical current density is then

given by

Jz rð Þ ¼
I

r20p
for 0 � r � r0: (44)

By inverting the Gauss law, it turns out that the electric field

has only a radial component

Er rð Þ ¼
Ir

2p�0r20vz
for 0 � r � r0; (45)

Er rð Þ ¼
I

2p�0vzr
for r 
 r0: (46)

Similarly, we derive the magnetic field from Ampère’s law,

which has only an azimuthal component

Bh rð Þ ¼
l0Ir

2pr20
for 0 � r � r0; (47)

Bh rð Þ ¼
l0I

2pr
for r 
 r0: (48)

The simulation performed is in good agreement with the ana-

lytic solution as shown in the panels of Figs. 4–6. The better

accuracy in the simulation N2 is obtained by virtue of the

improved statistics.

To check the accuracy and convergence of the Barnes-

Hut tree algorithm for the full set of magnetoinductive fields,

the relative error in the vectorial field of interest is compared

with the directly computed pair-particle solution. Therefore,
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FIG. 4. Static electron beam. In the

graphs, we show Er(x). We show two

numerical solutions, the first with

4� 104 particles (blue line, N1) and

the second one with 25� 104 particles

(dotted green, N2), both present good

agreement with the theoretical curve

(dotted red).

FIG. 5. Static electron beam. In the

graphs, we show Bh(x). We show two

numerical solutions, the first with

4� 104 particles (blue line, N1) and

the second one with 25� 104 particles

(dotted green, N2), both present good

agreement with the theoretical curve

(dotted red).

FIG. 6. Static electron beam. The cur-

rent density is uniform. In the graphs,

we show Jz(x). We show two numeri-

cal solutions, the first one with 4� 104

particles (blue line, N1) and the second

one with 25� 104 particles (dotted

green, N2), both present good agree-

ment with the theoretical curve (dotted

red).
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in Fig. 7, the respective relative errors incurred in the electric

and magnetic fields and current density are shown. The rela-

tive error � (for instance, in the electric field) is computed

according to the formula

�2k E; hð Þ ¼

P

n

j¼1

h

Eh
jk � Eh¼0

jk

i2

P

n

j¼1

h

Eh¼0
jk

i2
; (49)

where the index k stands for the order of Taylor expansion, h

is the MAC number (h ¼ 0 means pair–particle interaction)

and n is the number of particles. The previous figures exhibit

two important facts. First, we can see that the relative errors

in all three quantities decrease as we increase the order of

the Taylor expansion. Second, the relative errors have an

exponential trend; furthermore, we have an estimation of the

error once we set the multipole angle criteria. An additional

confirmation of the good results obtained lies in the equiva-

lence of the error’s curves between the monopole and the

dipole; indeed, the uniform mass and velocity in the initial

configuration imply a vanishing dipole contribution.

Furthermore, the relative error of the magnetic field is

exactly the same as the relative error of the electric field as

expected; in fact, in this configuration, the velocity is

constant.

B. Langmuir wave

While in the first test case we have looked at a static

benchmark, in the second test, we simulate a Langmuir

wave. The purpose of this benchmark is to validate the inte-

gration scheme with pure electrostatics before tackling a

more complex truly magnetoinductive case, making a com-

parison with the explicit Leap-Frog scheme,21 in fact, for

electrostatic problems, a full explicit scheme is a good

compromise between computational effort and relative

errors. The explicit Leap-Frog for electrostatic problems is

xnþ1
i ¼ xni þ Dtvni ; (50)

vnþ1
i ¼ vni �

qi

mi

Dtrun
i : (51)

Here, electrons oscillate around stationary ions. The simula-

tions performed have the following initial parameters:

n¼ 4� 106 as the total number of particles, the ions are at

rest, while the electrons have a Boltzmann-Maxwell distribu-

tion with vth¼ 0.05 c. A small perturbation is introduced in

the electron velocity distribution, a ¼ 0.05 according to the

formula

fe 0; x; vð Þ ¼
1

2p
1þ a cos kxxð Þð Þe�v2=2vth : (52)

We choose as the time step/xpeDt¼ 0.1 and the final time

xpet¼ 30. The rectangular [0, 2p]� [0, p](c/xpe)
2 is used as

a domain and we employ periodic boundary conditions.

In this benchmark, we resolve the plasma frequency of a

plasma. From theory, we expect that the electric energy

along the x-axis has a frequency x ¼ 1

E2
x ¼

X

i

ðExÞ
2
i : (53)

It is possible to observe the Fourier spectrum of electric

energy, Fig. 8, showing good agreement with theory and

revealing plasma wave harmonics even at this relatively low

amplitude, a testament to the low-noise characteristics of the

grid-free approach.

In the electrostatic case, a Leap-Frog integrator is

widely used, since its computational effort is much lower

than an implicit scheme and it produces acceptable relative

error in the total energy. The energy diagram is shown in the

following graph, it is meant to compare the relative error in

the total energy between a Leap-Frog and the integrator

introduced in Sec. IV.

We see from Fig. 9 that in all cases energy is conserved

to around 1% over ten plasma periods. For the larger time

step, the system continues to heat with the Leap-Frog

FIG. 7. Static electron beam. In the graph, we show relative errors for the

monopole (circle), dipole (line) and quadrupole (triangle) with respect to the

pair particle fields. The relative errors are computed for J(x), Er(x) and

Bh(x), which are colored, respectively, in blue, red and green. These errors

grow for increasing MAC value. These simulations are performed with 104

particles.

FIG. 8. Langmuir wave in cold plasma, Fourier analysis of the electric

energy, the maximum shows the main frequency.
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scheme and less with the AEM, indicating that energy con-

servation is sensitive to the integration scheme. In Ref. 28,

Huang et al. have recently discussed numerical heating in

PIC codes resulting from finite-grid instability (FGI), identi-

fying the lack of spectral fidelity (i.e., neglect of short-

wavelength modes) in the density deposition and field inter-

polation as the major culprit—an effect which does not arise

in our method. We note in passing that the “gridless” method

used by Huang et al. for comparison relied on a discretised

representation of the density and the electric field in Fourier

(k–)space, and as such differs fundamentally from the real-

space field-solvers used in our algorithm.

C. Electron beam

We now present a first real, dynamic test of the Darwin

model. The setup we have chosen is an electron beam propa-

gating through vacuum. The geometry is a disk as the static

electron beam has shown previously. According to Ref. 24,

it is possible to estimate the expansion of the RMS radius

and the transversal velocity

R2 ¼
1

n

X

n

i¼1

r2i V2 ¼
1

n

X

n

i¼1

v2i ; (54)

€R �
Ub

b2c2R
¼

R2 V2 � _R
2

� �
 �

t¼t0

R3
; (55)

where Ub ¼ qbcl0Ib=4pcm ¼ ðbc2=cÞIb=I0 and I0 is the

Alfv�en critical current. To derive this estimate, it is assumed

that the perveance of the electron beam is much smaller than

one, that is, its transversal velocity is negligible with respect

to the longitudinal component. We have carried out a simula-

tion employing 105 electrons distributed in a disk having

radius r0¼ 0.2 c/xpe. The particles have a longitudinal veloc-

ity cvz/c ¼ cb ¼ 0.8; we also assume that there is no initial

transverse motion. The initial configuration yields the fol-

lowing perveance:23

K ¼
2Ib

I0b
3c3

¼
1

2c

xper=c

bc

� �2

’ 2:4� 10�2; (56)

consistent with the assumptions made in the analytical

model.

FIG. 9. Langmuir wave. Energy dia-

gram on the left panel and a compari-

son of relative errors between Leap-

Frog and Asymmetrical Euler Method

(AEM) on the right panel, for two dif-

ferent time steps, xpeDt¼ 0.1, 0.31.

FIG. 10. Electron Beam. In panel (a)

we compare the theoretical RMS

radius (blue line) with the numerical

RMS radius (red line). The dotted lines

are the theoretical RMS transversal

velocity (blue) and the numerical RMS

transversal velocity (red). We have

performed an analysis of the absolute

error computed in panel (b).
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Figure 10 shows good agreement with the theory in both

RMS radius and transverse velocity. Further simulations

with up to 5� 105 electrons show no significant change in

the numerical results. The slight departure from the analyti-

cal result may be due to the envelope equation not taking

into account the longitudinal interaction among particles,

and secondly, the transversal velocities becoming relativis-

tic, which would violate the initial hypothesis (hv?i � vz).

Despite the fact that the scheme does not guarantee conser-

vation of the prime integrals (H, Px, Py and Pz), we still

achieve a good accuracy in the relative errors (Fig. 11).

We have also performed a parametric study by varying

the MAC value, indicated by h in the following Figs. 12 and

13. The relative errors are defined at time step k, for instance,

in the total energy, as follows:

�krel ¼
jHk �H0j

H0
; (57)

while the maximum error in the canonical momenta are

defined at time step k as

k�jjk1 ¼ maxifjP
k
i � Pk�1

i jg: (58)

It is worth mentioning that the divergence of the vector

potential r� A converges to zero when h tends to zero; this

behavior is highlighted in Fig. 12, where panel (a) exhibits

the maximum error in r� A. In contrast to most Darwin PIC

codes, no divergence cleaning is needed for the present

method. The parametric study also shows how the relative

error in total energy depends slightly on h, but not dramati-

cally [panel (b)].

By contrast the errors in the momenta are independent

of the MAC value, so the accuracy on the energy and

momenta depend mainly on the choice of the time integra-

tion scheme.

D. Weibel instability

In the last test, we present a study of the Weibel instabil-

ity in a beam-plasma system—such a configuration was first

studied in Ref. 25. The motivation for this test lies in the

generic nature of this phenomenon, in fact, it is a topic often

encountered in both astrophysical (e.g., magnetic reconnec-

tion) and laboratory (e.g., fast ignition) plasmas.26 We sum-

marize the initial configuration: homogeneous, collisionless,

charge- and current-neutral system. We study the transverse

dynamics of two initially uniform currents, the former is a

relativistic beam, whereas the second is a return current

which guarantees initial charge and current neutrality. The

plasma is characterized by density np0, while the beam has

density nb0/np0¼ 0.1 and Lorentz factor cb0¼ 2.5. We also

assume that electrons have a Maxwellian distribution with

thermal velocity hv?i=vb ¼ 10�4, while the ions are initially

at rest. The simulated domain is a square having 20 c/xpe

FIG. 11. Electron Beam, the above energy diagram shows kinetic energy in

blue, potential energy in red, magnetic energy in orange and total energy in

green.

FIG. 12. Electron Beam. A parametric study of the MAC value (h). The top

panel (a) exhibits the maximum errors in r� A, while panel (b) shows the

relative error in the total energy.

FIG. 13. Electron Beam. A parametric study of the MAC value (h), panels

(a) and (b) exhibit the maximum errors in the transversal canonical

momenta, respectively, Px and Py. Panel (c) shows the relative error and in

the longitudinal momentum, Pz.
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size and 8� 106 total number of particles. This is not

intended to mock up any realistic physical system, but is

closest to the periodic geometry used in the literature (open

boundaries are used for our simulations).

According to Fig. 14, it is apparent that the relativistic

beam electrons transfer energy and heat the plasma until

non-linear mechanisms dominate the dynamics.

The magnetic energy exhibits an exponential behavior

as predicted from the linear theory, under this circumstance,

the dispersion relation is25

Z0ðx=kv?Þ ¼ �ðx2
p þ k2c2Þv�2

? ðv?=vbÞ
2: (59)

The linear regime is suppressed by a non-linear mecha-

nism at about xpe t¼ 20. Figure 15 highlights good con-

servation of canonical momenta and divergence of A

[panels (a) and (b), respectively], but as Ref. 21 points

out, the time integration scheme used does not guarantee

conservation of the total energy [panel (c) shows the rela-

tive error in the total energy]. At later times, as in Ref.

25, the beam electrons start to attract each other due to

magnetic interaction, and repel plasma electrons. Thus,

the beam electrons coalesce into filaments which recom-

bine and decrease in number.

In Fig. 16, we show the beam (nb, first row) and plasma

(ne, second row) electron density and clearly exhibit the coa-

lescing process up to the point where the beam reaches the

box size, or in our case, the same dimensions as the initial

plasma region. According to Ref. 26, in the present configu-

ration, the Alfv�en critical current is always bigger than the

forward current. In fact, the initial Alfven current is

IAðt ¼ 0Þ ¼ mec
3=ehcvz=ci ’ 2:291mec

3=e, whereas the

maximum current contained within a filament at xpet¼ 60 is

Imaxp ’ 0:28mec
3=e for this example.

However, it is worth noting a discrepancy between the pre-

sent simulation and Ref. 25, in fact, the recombination process

of the filaments continue at a reduced speed, which is caused

by the open boundary conditions. In this example, the particles

were artificially arranged in a square box, but naturally tend to

form a circular configuration over time. Additional simulations

starting with circular beam/plasma geometry yielded similar

results for the linear and non-linear phases.

FIG. 14. Filamentation instability. Energy diagram in panel (a), it compares

the electron beam and the plasma kinetic energy with magnetic energy, the

quantities are in units of the initial beam energy. The dotted line shows the

analytical growth rate according to Eq. (59).

FIG. 15. Filamentation instability. Canonical momenta diagram in panel (a),

it compares the maximum errors in Px, Py and Pz. Panel (b) exhibits the max-

imum error in r� A. Finally, panel (c) shows the relative error in the total

energy.

FIG. 16. Filamentation instability.

Electron density in the plane x-y at

times indicated (xpet¼ 0, 20, 40, 60).

It exhibits the evolution of the beam

electron density (first row nb) and the

plasma electron density (second row

ne). The densities are in units of

max(nbþ ne).
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VI. CONCLUSIONS

To summarize, a new formulation of a Darwin model

has been presented, based on a special formulation of scalar

and vector potentials for two-dimensional, finite-sized par-

ticles. To avoid the well-known instability exhibited by

explicit time integration, we have implemented a semi-

implicit scheme based on a Hamiltonian formulation utiliz-

ing the canonical momenta as dynamic variables. Static

benchmark tests show good agreement with the analytical

theory, verifying the expected convergence of the field solver

within the multipole approximation used. The time integra-

tion scheme has been compared with the explicit Leap-Frog

for a simple electrostatic Langmuir plasma wave. The semi-

implicit scheme achieves a better conservation in the total

energy. A genuine magnetoinductive test of a relativistic

electron beam propagating in a vacuum achieves very high

accuracy and conservation of energy and momenta. Finally,

a challenging test for the present model is shown, which

despite the small differences in the boundary conditions

applied, reproduces the essential findings obtained with fully

electromagnetic PIC codes by Refs. 25 and 26. Further

detailed studies would be needed to investigate the pros and

cons of the present mesh-free approach over EM and Darwin

PIC codes in the context of beam-plasma simulation—espe-

cially for more complex geometries.

Further improvements in conservation properties can be

expected in future by incorporating a higher order time inte-

gration scheme such as Runge-Kutta or variational methods,

which should also permit the use of time steps approaching

the ion time-scale. Extensions to a fully 3D model should be

straightforward by employing the vector potential already

formulated in Ref. 7. The Darwin formulation described here

avoids the necessity of a grid inherent to classical particle-

in-cell (PIC) approaches, and may open up new modeling

possibilities for laser-irradiated plasmas (such as electron

transport in fast ignition schemes), or magnetic reconnection

and whistler waves in space plasmas.
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