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A new approach to Darwin or magnetoinductive plasma simulation is presented which combines a mesh-free9

field solver with a robust time-integration scheme avoiding numerical divergence errors in the solenoidal field10

components. The mesh-free formulation employs an efficient parallel Barnes-Hut tree algorithm to speed up11

the computation of fields summed directly from the particles, avoiding the necessity of divergence cleaning12

procedures typically required by particle-in-cell (PIC) methods. The time-integration scheme employs a13

Hamiltonian formulation of the Lorentz force, circumventing the development of violent numerical instabilities14

associated with time differentiation of the vector potential. It is shown that a semi-implicit scheme converges15

rapidly and is robust to further numerical instabilities which can develop from a dominant contribution of the16

vector potential to the canonical momenta. The model is validated with various static and dynamic benchmark17

tests, including a simulation of the Weibel-like filamentation instability in beam-plasma interactions.18

PACS numbers: Valid PACS appear here19

I. INTRODUCTION20

The fully electromagnetic description of the plasma is a21

computationally intensive endeavor governed by the hy-22

perbolic character of Maxwell’s equations, and the as-23

sociated need to resolve light waves on a spatial grid.24

However, for scenarios dominated by slowly evolving pro-25

cesses where electromagnetic wave propagation can be26

neglected, Maxwell’s equations can be simplified into a27

form more suitable for following collective phenomena28

on longer time scales. The Darwin or magnetoinduc-29

tive limit of Maxwell’s equations is one such approach30

which achieves this compromise, and is obtained by ne-31

glecting the transversal (otherwise known as solenoidal,32

or divergence-free) contribution of the displacement cur-33

rent in Ampère’s law. This omission turns the charac-34

teristic hyperbolic structure of Maxwell’s equations into35

a elliptic system, such that the Courant-Friedrichs-Lewy36

(CFL) condition for the time step, namely ∆t < ∆x/c,37

where ∆x and c are the grid space and speed of light38

respectively, does not need to be satisfied, leaving39

more scope for using larger timesteps.40

Darwin models are unfortunately not so simple to im-41

plement. To date many authors have developed and42

worked with Darwin particle-in-cell (PIC) simulations43

with mixed success. In their pioneering paper Nielsen44

and Lewis 1 showed that any attempt to derive the45

solenoidal field Esol via the time derivative of the vec-46

tor potential (Lagrangian derivative) is not consistent47
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with the Darwin limit and causes violent numerical in-48

stabilities. In fact, a direct approach on the evaluation of49

Esol reintroduces electromagnetic radiation through mu-50

tually inductive currents which have in principle been51

neglected. This obstacle can be overcome by deploy-52

ing moments of the Vlasov equation to eliminate ex-53

plicit time-derivatives, which yields instead a elliptical54

equation for Esol, the solution of which needs additional55

’divergence cleaning’ techniques to enforce the Coulomb56

gauge condition ∇ ·A2,3. Other authors have proposed57

Vlasov-Darwin models4,5, including a charge-conserving58

implementation6, which present additional challenges for59

multi-dimensional problems with complex boundary con-60

ditions.61

Recently, Mašek and Gibbon 7 proposed a proof-of-62

principle mesh-free formulation of three dimensional Dar-63

win model which behaved satisfactorily for a simple test64

cases, but ran into difficulties for more general scenarios65

in which arbitrarily strong vector potentials were per-66

mitted. Nevertheless the mesh-free approach does offer67

some significant advantages compared to traditional grid-68

based codes which motivate the present quest for a more69

robust algorithm. For example, in high-density plasmas70

Coulomb collisions become significant, which in principle71

can be included directly through a mesh-free approach,72

rather than via an ad-hoc Monte-Carlo scattering op-73

erator as is common in PIC methods. For collisionless74

plasmas, the absence of a grid removes aliasing instabil-75

ities (and their associated numerical heating) by design,76

permitting simulation of initially cold plasmas. A grid-77

less method is also intrinsically adaptive and naturally78

offers more flexible boundary conditions8, including, for79

example, truly open (vacuum) boundaries for modeling80

isolated systems.81

As a first step towards the development of a robust three82
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dimensional code, we present a mesh-free two dimen-83

sional Darwin formulation combined with a Hamiltonian84

integration time scheme. This approach circumvents the85

use of Esol in the particle integrator, employing instead86

gradients of a divergence-free vector potential.87

This paper is organized as follows: first, in section II88

the classical Darwin approximation is introduced. This89

serves as the basis for a new two dimensional formulation90

is proposed in section III including a special formulation91

of the scalar and vector potentials consistent with a finite-92

size particle density profile. We then discuss the direct93

solution of the Darwin field equations via a Barnes-Hut94

tree algorithm, permitting a rapid O(N log N) summa-95

tion, just as for purely electrostatic systems. The integra-96

tion scheme adopted is described in section IV, it is a sta-97

ble integrator, implicit in space and explicit in velocity.98

Finally, we validate the model with various benchmark99

tests. The first of these examines the accuracy of the field100

solver in a cylindrical plasma having uniform density.101

Dynamic tests on Langmuir waves and vacuum beam102

propagation validate the robustness and accuracy of the103

integration scheme. Finally, the well-known Weibel-like104

filamentation instability in high-density plasma is exam-105

ined, comparing results with previous grid-based models.106

II. MAXWELL’S EQUATIONS107

In this section we briefly recap on the formulation of108

Maxwell’s equations according to the Darwin or magne-109

toinductive model, the description followed is the same110

of as in previous works1–3,7,9. A key procedure is the use111

of Helmholtz’s theorem, which states that any vector can112

be decomposed into irrotational and solenoidal part. For113

instance the electric field E = Eirr + Esol. Therefore, we114

can rewrite the Maxwell’s equation as follows.115

∇ ·Eirr = 4πρ (1)

∇×Esol = −1

c

∂B

∂t
(2)

∇ ·B = 0 (3)

∇×B =
4π

c
J +

1

c

∂Eirr

∂t
+

1

c�
�
�@
@
@

∂Esol

∂t
(4)

The Darwin model neglects the solenoidal component116

of the displacement current in Ampère’s Law and con-117

sequently presupposes that information is transmitted118

instantaneously. This is because the hyperbolic nature119

of Maxwell’s equations is replaced by an elliptic sys-120

tem which neglects electromagnetic wave propagation. In121

fact, it is possible to rewrite equations 1-4 in the Coulomb122

gauge (∇ ·A = 0) in the form of two Poisson-like equa-123

tions:124

∇2ϕ = −4πρ (5)

∇2A = −4π

c
Jsol, (6)

where the fields can be recovered from:125

E = Eirr + Esol (7)

Eirr = −∇ϕ (8)

Jsol = J +
1

4π

∂Eirr

∂t
= J− Jirr (9)

B = ∇×A (10)

It is worth noting here that in general, Amperè’s law is126

not gauge invariant9, a fact that will influence our for-127

mulation of the model vector potential in the following128

section.129

III. 2D DARWIN MODEL FOR FINITE-SIZED130

PARTICLES131

In principle particles in an N-body system can be132

treated as point charges10,11 and then modeled by a Dirac133

delta function. Numerically this is impractical because134

it introduces divergences in the scalar and vector poten-135

tial, which become rapidly unmanageable for the integra-136

tion scheme. We can circumvent this issue by employing137

a smooth particle profile, as frequently deployed in as-138

trophysical models12. Concretely, we need a simple139

particle’s model such that we are able to solve140

analytically the Maxwell-Darwin system of equa-141

tions. Therefore the profile proposed is a radially sym-142

metric shape function13. defined as:143

Sε(x) =
ε2

π(||x||2 + ε2)2
(11)

lim
ε→0

Sε(x) = δ(x), (12)

where the parameter ε is a smoothing parameter which144

can be tuned to control the collisionality. The function145

Sε is chosen as Plummer profile and it is straightforward146

to show this function tends to the Dirac delta function147

when ε goes to zero. Higher-order shape functions are148

in principle possible, but make the subsequent deriva-149

tion of the vector potential mathematically more com-150

plex. Previous experience with electrostatic mesh-free151

implementations14–16 has shown that the above particle152

profile can be deployed in both collisional and collision-153

less regimes, motivating the retention of this analytically154

convenient choice for the present Darwin model. For the155
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collisionless systems of primary interest here, it suffices156

to ensure that ε � a, where a is the mean interparticle157

spacing. In a statistical sense, ε plays an analogous role158

to the grid spacing in PIC codes, which typically call for159

’many particles per cell or Debye length’. Here the anal-160

ogy stops though: in our method there is no requirement161

that ε ≤ λD to prevent numerical heating.162

In the following analysis, we will simplify the formulas163

with the substitution r2ij = ||xi − xj ||2.164

We identify two sources in the coupled system 5-6, which165

are the density ρ and the solenoidal part of the current166

density Jsol. We first define the density:167

ρ(xi) =
∑
j 6=i

qjSε
(
xi − xj

)
=
∑
j 6=i

qjε
2/π

(r2ij + ε2)2
(13)

Substituting the definition of density in the continuity168

equation, the corresponding current density is, for a set169

of mobile particles, expressed by:170

J(xi) =
∑
j 6=i

qjvjSε
(
xi − xj

)
=
∑
j 6=i

qjvjε
2/π

(r2ij + ε2)2
(14)

Our initial aim is to solve analytically the system 5-6171

employing the Plummer profile in unbounded domain.172

This approach has two goals: the first is to develop of173

an efficient method using open boundary conditions, and174

secondly retain sufficient flexibility to include periodic175

boundary conditions. To proceed, we employ the Green’s176

function method to solve the Poisson equation, which177

allows us to use an unbounded domain without particular178

issue.179

In two dimensions the Green’s function is:180

G(x; x′) =
1

4π
log(||x− x′||2) + h (15)

Where h is a harmonic function. First we solve the fol-181

lowing system:182

∇2ϕ = −4πρ (16)

∇2Â = −4π

c
J (17)

ϕ(xi) = −4πρ(xi) ∗ G(xi; x′) = −
∑
j 6=i

qj log

(
r2ij + ε2

)
(18)

Â(xi) = −4π

c
J(xi) ∗ G(xi; x′) = −1

c

∑
j 6=i

qjvj log

(
r2ij + ε2

)
(19)

From these quantities it is straightforward to write down183

the electric and magnetic vector fields:184

Eirr(xi) = −∇ϕ = 2
∑
j 6=i

qj
xi − xj
r2ij + ε2

(20)

B(xi) = ∇× Â = −2

c

∑
j 6=i

qj

(
xi − xj

)
× vj

r2ij + ε2
(21)

We employ Â only for the sake of the evaluation of B. In185

fact Â is not solenoidal and it does not satisfy equation 6.186

Although the vector potential A satisfies a Poisson-like187

equation, the integration of its equation in two dimen-188

sions leads to diverging terms using the Green’s func-189

tion method. In fact, we can write the solenoidal current190

density7 as:191

Jsol =
1

4π
∇×∇×

(
J(xi) ∗ G(xi; x′)

)
(22)

Therefore, by inverting the Laplacian in equation 6, we192

obtain:193

A = −4π

c
Jsol(xi) ∗ G(xi; x′) (23)

The double convolution G(xi; x′) ∗ G(xi; x′) in R2 yields194

to diverging terms. To circumvent this issue, we propose195

an alternative method, which starts from the Coulomb196

gauge condition. In fact, since A is solenoidal, it must197

be a curl of some vector, so that ∇·A = 0. We make the198

following assumption:199

A(xi) =
1

2c

∑
j 6=i

qj∇×
[
f(r2ij)

(
xi − xj

)
× vj

]
(24)

z

y

x

Ax

AyA

Bz

FIG. 1. Vector Potential sketch, two dimensional in both
space and velocity (2D2V). Under this assumption B =
Bzk = ∇×A = ∇×

(
Axi +Ayj

)
.

Hence, the vector
(
xi − xj

)
× vj is parallel to B, which200

has only z component in two dimensions, it is mapped201
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in the plane x − y by applying the curl operator (Fig.202

1). We assume f to be a radially symmetric function.203

Since the other fields possess this property, it is reason-204

able to assume the same for A, which also simplifies its205

evaluation. In order that the Maxwell-Darwin limit is206

consistent, the curl of Eq. (24) must match the equation207

21, which yields a second order differential equation for f208

and rij as dependent and independent variables respec-209

tively. These arguments lead to the following function210

satisfying the above-mentioned differential equation:211

f(r2ij) = 2− ε2

r2ij
log

(
r2ij
ε2

+ 1

)
− log

(
r2ij
ε2

+ 1

)
(25)

f ′(r2ij) =
1

r2ij

[
ε2

r2ij
log

(
r2ij
ε2

+ 1

)
− 1

]
(26)

Thus, the vector potential takes the form:212

A(xi) =
1

2c

∑
j 6=i

qj∇×
[
f(r2ij)

(
xi − xj

)
× vj

]
=

=
1

2c

∑
j 6=i

qjf(r2ij)vj+

+
1

c

∑
j 6=i

qjf
′(r2ij)

xi − xj
||xi − xj ||

×
[
vj ×

xi − xj
||xi − xj(t)||

]
(27)

It is straightforward to verify that the vector potential213

Eq. 27 reverts to the (2D) point particle vector potential,214

for ε −→ 0+:215

Aδ(xi) = − 1

2c

∑
j 6=i

qj

[
vj log

(
r2ij

)
+

+

((
xi − xj

)
· vj
)

xi − xj
r2ij

]
(28)

It is worth mentioning that the choice of Eq. 25 has other216

important properties, in fact it guarantees that A does217

not diverge when rij −→ 0+ and the vector potential has218

indeed an upper bound:219

A(xi) ≤
1

2c
N

[
1− 2 log ε

]
max
j

(qjvj) (29)

Where N is the number of particles.220

221

z

y

x

A

Ax Ay

A⊥

Az

Bz

B⊥

FIG. 2. Vector Potential, schematic visualization of the mod-
ified fields in the 2D3V geometry. It is allowed the develop-
ment of a current along the z which yields a magnetic field in
the plane x-y.

In many applications in plasma a two dimensional ap-222

proach in space and three dimensional in velocity is more223

realistic. For completeness, we also report here a mod-224

ification in the vector potential. Indeed the definitions225

13-21 and the transversal components of 27 remain un-226

changed when we introduce a correction in the longitudi-227

nal component of A to obtain the so called 2D3V model228

(Fig. 2):229

Az(xi) = −1

c

∑
j 6=i

qjvzj log

(
r2ij + ε2

)
= Âz(xi) (30)

We employ this model in the section V, where we perform230

the validation of the model for a beam-plasma interac-231

tion.232

A. Field Approximation233

We have derived the analytic solution of the scalar234

and vector potential, consistent with a finite-sized235

particle shape suitable for dynamic N-body simulations,236

but it turns out that the computational cost needed to237

compute the pair particle interaction is O(N2), where N238

is the number of particles19,20. Since we strive for a large239

number of particles for good statistics, a direct approach240

is computationally inefficient. However, we can have a241

good approximation of the fields using, for instance, a242

Barnes-Hut tree algorithm. This algorithm yields an243

approximate solution with a reasonable computational244

cost O(N logN) and with controlled errors.245

246

The Barnes-Hut tree algorithm is described extensively
elsewhere12,19,20, but for completeness we provide a brief
description here. The first step consists of introduce a
data structure (quad-tree in 2D; oct-tree in 3D), where
each node of the tree may contain one or more parti-
cles within a square box of side s. To approximate the
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summations, a so-called multipole acceptance criterion
(MAC) is used to systematically group distant particles
together into pseudoparticles (Fig. 3). One particularly
intuitive MAC is the original Barnes-Hut criterion:

θc = s/d < θ (31)

For opening angles s/d smaller than θ, the pseudoparticle247

cluster is included in the local sum, whereas for larger an-248

gles the node is subdivided into its child nodes, which are249

then recursively retested. Clearly, the larger the choice250

of θ, the faster the force summation will proceed at a cost251

of larger error. A good compromise for θ lies within the252

interval [0.3, 0.7], which will yield errors well below 1%,253

as we show later in section V.254

1

6

3

2

7

5 4

8

9

d

s

θc = s/d

FIG. 3. Barnes-Hut acceptance criteria.

In order to improve the accuracy of the summations, we255

have calculated the Taylor expansion of the far fields256

(interaction particle-pseudoparticle) up to second order.257

The present Darwin model is implemented within the258

parallel treecode framework PEPC17,18.259

IV. HAMILTONIAN FORMULATION260

The present mesh-free formulation of the Darwin261

model avoids the usual Lagrangian formulation of the262

Lorentz equation. As already mentioned in other263

articles1,7, this approach normally leads to numerical264

instabilities. As already explained, is due to the Dar-265

win approximation, we cannot use Esol = −∂A/∂t in266

the Lorentz equation, because we would implicitly re-267

introduce retardations that we have neglected in the268

Ampère’s law. Hence, a Lagrangian formulation in no269

longer consistent in this context. One way round this270

is to employ instead a Hamiltonian formulation of the271

Lorentz equation:272

dpi
dt

= qi

[
Eirr(xi) + Esol(xi) +

1

c
vi ×B(xi)

]
(32)

We indicate with pi = miγivi the momentum of the i-th273

particle. The Lagrangian at the coordinate xi of the i-th274

particle subjected to and external electromagnetic field275

is:276

Li = −mic
2

γi
− qiϕ(xi) +

qi
c

vi ·A(xi) (33)

We also define the generalized canonical momentum of277

the i-th particle, associated to the Lagrangian Li:278

Pi =
∂Li
∂vi

= miγivi +
qi
c

A(xi) (34)

In terms of the canonical momentum we compute the279

Hamiltonian associated with i-th particle:280

Hi(xi,Pi) = Pi · vi − Li = miγic
2 + qiϕ(xi) (35)

We then obtain the equations which govern the motion281

of the particles, subjected to magnetoinductive forces1:282

ẋi =
∂Hi
∂Pi

=
1

miγi

[
Pi −

qi
c

A(xi)

]
= vi (36)

Ṗi = −∂Hi
∂xi

= −qi∇ϕ(xi) +
qi
c
∇
(
A(xi) · vi

)
(37)

Similarly we have done for a single particle, we define the283

Lagrangian and Hamiltonian for a system of mutually284

interacting particles:285

L =
∑
i

[
− mic

2

γi
− 1

2
qiϕ(xi) +

1

2c
qivi ·A(xi)

]
(38)

H =
∑
i

Pi · vi − L =

=
∑
i

miγic
2 +

1

2

∑
i

qiϕ(xi) +
1

2c

∑
i

qivi ·A(xi)

(39)

As mentioned before, the Hamiltonian formulation re-286

quires the adoption of an implicit integration scheme due287

to the correlation between the canonical momentum and288

the vector potential, in other words the Hamiltonian is289

not fully separable:290

Hi(xi,Pi) = Ti(xi,Pi) + Vi(xi), (40)

where Ti, Vi are respectively kinetic and potential energy291

of the i-th particle.292

The numerical scheme we introduce is effectively a semi-293

implicit Asymmetrical Euler method (AEM), which is a294
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first order in time scheme, which consists in taking ex-295

plicit velocity and implicit coordinate. This choice is mo-296

tivated by the fact that if the vector potential becomes297

too strong, an implicit velocity in the numerical scheme298

may lead a numerical instability. In fact, under the con-299

dition of a strong vector potential, we might simplify the300

equation 37:301

Ṗi =
d

dt

(
γi
dxi
dt

)
+
qi
c

dAi

dt
≈ 0 ≈ γi

d2xi
dt2

+ β
dxi
dt

(41)

Necessarily β � γi and by discretizing the equation 41302

with a second order centered scheme leads to numerical303

instabilities. According to Quarteroni 22 , it is possible304

to prevent the formation of the numerical instabilities305

by discretizing the second term in the equation 41 with306

a backward scheme. Consequently, this trick implies the307

choice of taking explicit velocity in the discretized Hamil-308

tonian equations 36-37, which thus becomes:309

xn+1
i = xni + ∆tvni (42)

Pn+1
i = Pn

i + qi∆t

[
−∇ϕn+1

i +
1

c
∇
(

An+1
i · vni

)]
(43)

Therefore, the equation 42 is not coupled to the momen-310

tum equation 43, but rather it is given explicitly. This311

implies that the equation 43 might be computed in an ex-312

plicit fashion, by updating the fields at the new particles’313

positions. The method presented is a good compromise314

between computational costs and conservation of the first315

integrals of the motion. On the other hand, there is also316

ample scope for improving the latter by adopting higher317

order time integration schemes27.318

V. NUMERICAL RESULTS319

In this section, we focus our attention on the validation320

of the model described in the previous sections. The val-321

idation is organized in four physical test cases: the first322

is a static electron beam with cylindrical symmetry. The323

second test is a simple Langmuir wave with the magnetic324

neglected. This is followed by a dynamic test involving325

both electrostatic and magnetic fields using the expan-326

sion of cylindrically symmetric electron beam. Finally327

we examine the filamentation instability of an electron328

beam penetrating a plasma.329

A. Static Electron Beam330

The first test case we consider is a static electron beam331

with uniform density in a disc, where an analytic solution332

is known23. The goals of this test are to study the preci-333

sion of the field solver. Two calculations are shown, N1334

and N2, respectively with 4× 104 and 25× 104 particles335

distributed in a disc having radius r0 = 0.2 c/ωpe. The336

beam has an initial longitudinal velocity vz = 0.4 c. We337

compare electric, magnetic field and current density with338

the corresponding theoretical solution. Given a current339

I = nvzπr
2
0, then for the above configuration the theo-340

retical current density is:341

Jz(r) =
I

r20π
for 0 ≤ r ≤ r0 (44)
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FIG. 4. Static electron beam. The current density is uniform.
In the graphs we show Jz(x). We show two numerical solu-
tions, the first with 4 × 104 particles (blue line, N1) and the
second one with 25 × 104 particles (dotted green, N2), both
present a good agreement with the theoretical curve (dotted
red).

By inverting the Gauss’s law it turns out the electric field342

has only a radial component:343

Er(r) =
Ir

2πε0r20vz
for 0 ≤ r ≤ r0 (45)

Er(r) =
I

2πε0vzr
for r ≥ r0 (46)
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FIG. 5. Static electron beam. In the graphs we show Er(x).
We show two numerical solutions, the first with 4×104 parti-
cles (blue line, N1) and the second one with 25×104 particles
(dotted green, N2), both present a good agreement with the
theoretical curve (dotted red).
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Similarly, we derive the magnetic field from the Ampère’s344

law, which has only an azimuthal component:345

Bθ(r) =
µ0Ir

2πr20
for 0 ≤ r ≤ r0 (47)

Bθ(r) =
µ0I

2πr
for r ≥ r0 (48)
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FIG. 6. Static electron beam. In the graphs we show Bθ(x).
We show two numerical solutions, the first with 4×104 parti-
cles (blue line, N1) and the second one with 25×104 particles
(dotted green, N2), both present a good agreement with the
theoretical curve (dotted red).

The simulation performed have a good agreement with346

the analytic solution as showed in the panels of Fig. 5,347

6 and 4. The better accuracy in the simulation N2 is348

obtained by virtue of the improved statistics.349
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FIG. 7. Static electron beam. In the graph we show rela-
tive errors for monopole (circle), dipole (line) and quadrupole
(triangle) respect the pair particle fields. The relative errors
are computed for J(x), Er(x) and Bθ(x), which are colored
respectively in blue, red and green. These errors are growing
for increasing MAC value. These simulations are performed
with 104 particles.

To check the accuracy and convergence of the Barnes-350

Hut tree algorithm for the full set of magnetoinductive351

fields, the relative error in the vectorial field of interest352

is compared with the directly computed pair-particle so-353

lution. Therefore, in Fig. 7 the respective relative errors354

incurred in the electric, magnetic field and current den-355

sity are shown. The relative error ε (for instance in the356

electric field) is computed according to the formula:357

ε2k(E, θ) =

∑n
j=1

[
Eθ
jk −Eθ=0

jk

]2
∑n
j=1

[
Eθ=0
jk

]2 , (49)

where the index k stands for the order of the Taylor ex-358

pansion, θ is the MAC number (θ = 0 means pair particle359

interaction) and n is the number of particles. The previ-360

ous figures exhibit two important facts. First, we can see361

as the relative errors in all three quantities decrease as we362

increase the order of the Taylor expansion. Secondly, the363

relative errors have an exponential trend, furthermore we364

have an estimation of the error once we set the multipole365

angle criteria. An additional confirmation of the good re-366

sults obtained lies in the equivalence of the error’s curves367

between monopole and dipole, indeed uniform mass and368

velocity in the initial configuration, imply a vanishing369

dipole contribution. Furthermore, relative error of the370

magnetic field is exactly the same of the relative error of371

the electric field as expected, in fact, in this configuration372

the velocity is constant.373

B. Langmuir Wave374

While in the first test case we have looked at a static375

benchmark, in the second test we simulate a Langmuir376

wave. The purpose in this benchmark is to validate the377

integration scheme with pure electrostatics before tack-378

ling a more complex truly magnetoinductive case, mak-379

ing a comparison with the explicit Leap-Frog scheme21,380

in fact for electrostatic problems a full explicit scheme381

is a good compromise between computational effort and382

relative errors. The explicit Leap-Frog for electrostatic383

problems is:384

xn+1
i = xni + ∆tvni (50)

vn+1
i = vni −

qi
mi

∆t∇ϕni (51)

Here, electrons oscillate around stationary ions. The sim-385

ulations performed have the following initial parameters:386

n = 4 × 106 as total number of particles, the ions are387

at rest while the electrons have a Boltzmann-Maxwell388

distribution with vth = 0.05 c. A small perturbation is389

introduced in the electron velocity distribution, α = 0.05390

according to the formula:391

fe(0,x,v) =
1

2π

(
1 + α cos(kxx)

)
e−v

2/2vth (52)
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We choose as time step /ωpe∆t = 0.1 and final time392

ωpet = 30. The rectangular [0, 2π]× [0, π]
(
c/ωpe

)2
is393

used as domain and we employ periodic boundary condi-394

tions.395
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FIG. 8. Langmuir wave in cold plasma, Fourier analysis of
the electric energy, the maximum shows the main frequency.

In this benchmark we resolve the plasma frequency of396

a plasma. From the theory we expect that the electric397

energy along x-axis has a frequency ω = 1:398

E2
x =

∑
i

(Ex)2i (53)

It is possible to observe the Fourier spectrum of electric399

energy Fig. 8, showing a good agreement with the400

theory and revealing plasma wave harmonics even401

at this relatively low amplitude, a testament to the402

low-noise characteristics of the grid-free approach.403

404

In the electrostatic case a Leap-Frog integrator is widely405

used, since its computational effort is much lower than an406

implicit scheme and it produces acceptable relative error407

in the total energy. The energy diagram is shown in408

the following graph, it is meant to compare the relative409

error in the total energy between a Leap-Frog and the410

integrator introduced in the previous section.411
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FIG. 9. Langmuir wave. Energy diagram on the left panel and
comparison of relative errors between Leap-Frog and Asym-
metrical Euler Method (AEM) on the right panel, for two
different time steps, ωpe∆t = 0.1, 0.31.

We see from Fig. 9 that in all cases energy is conserved412

to around 1% over ten plasma periods. For the larger413

time step, the system continues to heat with the Leap-414

Frog scheme and less with the AEM, indicating that the415

energy conservation is sensitive to the integration scheme.416

Huang, Zeng, Wang, Meyers and Albright 28 have re-417

cently discussed numerical heating in PIC codes result-418

ing from finite-grid instability (FGI), identifying a lack of419

spectral fidelity (ie: neglect of short-wavelength modes)420

in the density deposition and field interpolation as the421

major culprit – an effect which does not arise with our422

method . We note in passing that the ’gridless’ method423

used by Huang et al for comparison relied on a discretized424

representation of the density and electric field in Fourier425

(k−)space, and as such differs fundamentally from the426

real-space field-solvers used in our algorithm.427

C. Electron Beam428

We now present a first real, dynamic test of the Darwin429

model. The setup we have chosen is an electron beam430

propagating through vacuum. The geometry is a disk as431

the static electron beam shown previously. According to432

Lee and Cooper 24 it is possible to estimate the expansion433

of the RMS radius and transversal velocity:434

R2 =
1

n

n∑
i=1

r2i V 2 =
1

n

n∑
i=1

v2i (54)

R̈− Ub
β2γ2R

=

[
R2

(
V 2 − Ṙ2

)]
t=t0

R3
(55)

where Ub = qβcµ0Ib/4πγm = (βc2/γ)Ib/I0 and I0 is435

the Alfvén critical current. To derive this estimate, it436

is assumed that the perveance of the electron beam is437

much smaller than one, that is: its transversal velocity438

is negligible with respect to the longitudinal component.439

We have carried out a simulation employing 105 electrons440

distributed in a disk having radius r0 = 0.2 c/ωpe. The441

particles have a longitudinal velocity γvz/c = γβ = 0.8,442

we also assume there is no initial transverse motion. The443

initial configuration yields the following perveance:23444

K =
2Ib

I0β3γ3
=

1

2γ

(
ωper/c

βγ

)2

' 2.4× 10−2, (56)

consistent with the assumptions made in the analytical445

model.446

Fig. 10 shows a good agreement with the theory in447

both RMS radius and transverse velocity. Further simu-448

lations with up to 5 × 105 electrons show no significant449

change in the numerical results. The slight departure450

from the analytical result may be due to the envelope451
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FIG. 10. Electron Beam. In the panel a we compare theoret-
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(red line). The dotted lines are the theoretical RMS transver-
sal velocity (blue) and numerical RMS transversal velocity
(red). We have performed an analysis of the absolute error
computed in the panel b.

equation not taking into account the longitudinal inter-452

action among particles, and secondly the transversal ve-453

locities becoming relativistic, which would violate the ini-454

tial hypothesis (〈v⊥〉 � vz). Despite the fact that the455

scheme does not guarantee conservation of the prime inte-456

grals (H, Px, Py and Pz), we still achieve a good accuracy457

in the relative errors.458

-0.005

0.0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

E
n

er
g

y
[m

e
n

c2
]

0 1 2 3 4 5 6 7 8 9 10

pe t

Energy Diagram

Kinetic Energy

Potential Energy

Magnetic Energy

Total Energy

FIG. 11. Electron Beam, the above energy diagram shows ki-
netic energy in blue, potential energy in red, magnetic energy
in orange and total energy in green.

We have also performed a parametric study by varying459

the MAC value, indicated with θ in the following figures460

12, 13. The relative errors are defined at time step k, for461

instance in the total energy, as follows:462

εkrel =
|Hk −H0|
H0

(57)

While the maximum error in the canonical momenta are463

defined at time step k:464

||ε||k∞ = max
i
{|Pk

i −Pk−1
i |} (58)
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FIG. 12. Electron Beam. Parametric study on the MAC
value (θ). The top panel a) exhibits the maximum errors in
the ∇ · A, while the panel b shows the relative error in the
total energy.

It is worth mentioning that the divergence of the vec-465

tor potential ∇ · A converges to zero when θ tends to466

zero, this behavior is highlighted in the figure 12, where467

the panel a exhibits the maximum error in ∇ · A. In468

contrast to most Darwin PIC codes, no divergence clean-469

ing is needed with the present method. The parametric470

study also shows how the relative error in total energy471

depends slightly on θ, but not dramatically (panel b).472
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FIG. 13. Electron Beam. Parametric study on the MAC
value (θ), the panels a, b exhibit the maximum errors in
the transversal canonical momenta, respectively Px, Py. The
panel c shows the relative error and in the longitudinal mo-
mentum, Pz.

By contrast the errors in the momenta are independent473

of the MAC value, so the accuracy on the energy and474

momenta depend mainly on the choice of the time inte-475

gration scheme.476

D. Weibel Instability477

In the last test we present a study of the Weibel in-478

stability in a beam-plasma system - such a configuration479

was first studied in Lee and Lampe 25 . The motiva-480

tion for this test lies in the generic nature of this phe-481

nomenon, in fact it is a topic often encountered both in482

astrophysical (e.g. magnetic reconnection) and labora-483

tory (e.g. fast ignition) plasma26. We summarize the484

initial configuration: homogeneous, collisionless, charge-485

and current-neutral system. We study the transverse dy-486

namics of two initially uniform currents, the former is487

a relativistic beam, whereas the second is a return cur-488

rent which guarantees initial charge and current neutral-489

ity. The plasma is characterized by density np0 while490

the beam has density nb0/np0 = 0.1 and Lorentz factor491

γb0 = 2.5. We also assume electrons have a Maxwellian492

distribution with thermal velocity 〈v⊥〉/vb = 10−4, while493

the ions are initially at rest. The simulated domain is a494

square having size 20 c/ωpe and 8× 106 total number of495

particles. This is not intended to mock up any realistic496

physical system, but is closest to the periodic geometry497

used in the literature (open boundaries are used for our498

simulations).499

According to the Fig. 14, it is apparent out that the500

relativistic beam electrons transfer energy and heat the501

plasma until non-linear mechanisms dominate the dy-502

namics.503
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FIG. 14. Filamentation instability. Energy diagram in the
panel a, it compares electron beam and plasma kinetic energy
with magnetic energy, the quantities are in unit of the initial
beam energy. The dotted line shows the analytical growth
rate according to equation 59.

The magnetic energy exhibits an exponential behavior as504

predicted from the linear theory, under this circumstance505

the dispersion relation is25:506

Z ′(ω/kv⊥) = −(ω2
p + k2c2)v⊥

−2(v⊥/vb)
2 (59)

The linear regime is suppressed by non-linear mechanism507

at about ωpet = 20. The figure 15 highlights good conser-508

vation of canonical momenta and divergence of A (panels509

a and b respectively), but as Leimkuhler and Reich 21
510

point out, the time integration scheme used does not511

guarantee conservation of the total energy (panel c shows512

the relative error in the total energy).513
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FIG. 15. Filamentation instability. Canonical momenta di-
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Px, Py and Pz. The panel b exhibits the maximum error in
∇·A. Finally, the panel c shows the relative error in the total
energy.

At later times, as in Lee and Lampe 25 , the beam elec-514

trons start to attract each other due to magnetic inter-515

action, and repel plasma electrons. Thus, the beam elec-516

trons coalesce into filaments which recombine and de-517

crease in number.518

FIG. 16. Filamentation instability. Electron density in the plane x-y at the times indicated (ωpet = 0, 20, 40, 60). It exhibits
the evolution of the beam electron density (first row nb) and plasma electron density (second row ne). The densities are in
unit of max(nb + ne).

In Fig. 16 we show the beam (nb, first row) and plasma519 (ne, second row) electron density and clearly exhibit520
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the coalescing process up to the point where the beam521

reaches the box size, or in our case the same dimensions522

as the initial plasma region. According to Honda, Meyer-523

ter-Vehn and Pukhov 26 , in the present configuration,524

the Alfvén critical current is always bigger than the525

forward current. In fact, the initial Alfvén current is526

IA
(
t = 0

)
= mec

3/e〈γvz/c〉 w 2.291mec
3/e, whereas527

the maximum current contained within a filament at528

ωpet = 60 is Imaxp w 0.28mec
3/e for this example.529

However, it is worth noting a discrepancy between the530

present simulation and Lee and Lampe 25 , in fact the531

recombination process of the filaments continue at a re-532

duced speed, this is caused by the open boundary con-533

ditions. In this example the particles were artificially534

arranged in a square box, but naturally tend to form a535

circular configuration over time. Additional simulations536

starting with a circular beam/plasma geometry yielded537

similar results for the linear and nonlinear phases.538

VI. CONCLUSIONS539

To summarize, a new formulation of a Darwin model540

has been presented, based on a special formulation of541

scalar and vector potentials for two-dimensional, finite-542

sized particles. To avoid the well-known instability ex-543

hibited by explicit time integration, we have implemented544

a semi-implicit scheme based on a Hamiltonian formula-545

tion utilizing the canonical momenta as dynamic vari-546

ables. Static benchmark tests show good agreement with547

the analytical theory, verifying the expected convergence548

of the the field solver within the multipole approxima-549

tion used. The time integration scheme has been com-550

pared with the explicit Leap-Frog for a simple electro-551

static Langmuir plasma wave. The semi-implicit scheme552

achieves a better conservation in the total energy. A553

genuine magnetoinductive test of a relativistic electron554

beam propagating in vacuum achieves very high accu-555

racy and conservation of energy and momenta. Finally,556

a challenging test for the present model is shown, which557

despite small differences in the boundary conditions ap-558

plied, reproduces the essential findings obtained with559

fully electromagnetic PIC codes by Lee and Lampe 25
560

and Honda, Meyer-ter-Vehn and Pukhov 26 . Further de-561

tailed studies would be needed to investigate the pros562

and cons of the present mesh-free approach over EM and563

Darwin PIC codes in the context of beam-plasma simu-564

lation – especially for more complex geometries.565

Further improvements in conservation properties can be566

expected in future by incorporating a higher order time567

integration scheme such as Runge-Kutta or variational568

methods, which should also permit the use of timesteps569

approaching the ion time-scale. Extensions to a fully 3D570

model should be straightforward by employing the vec-571

tor potential already formulated in Mašek and Gibbon 7 .572

The Darwin formulation described here avoids the neces-573

sity of a grid inherent in classical particle-in-cell (PIC)574

approaches, and may open up new modeling possibilities575

for laser-irradiated plasmas (such as electron transport576

in fast ignition schemes), or magnetic reconnection and577

whistler waves in space plasmas.578
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