001     835924
005     20240711113515.0
024 7 _ |a 10.1088/0741-3335/59/1/014017
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a 2128/14987
|2 Handle
024 7 _ |a WOS:000386594300017
|2 WOS
037 _ _ |a FZJ-2017-05056
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Dunne, M. G.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The role of the density profile in the ASDEX-Upgrade pedestal structure
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501484361_31608
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan.Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |a EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)
|0 G:(EU-Grant)633053
|c 633053
|f EURATOM-Adhoc-2014-20
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Potzel, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Reimold, F.
|0 P:(DE-Juel1)166412
|b 2
|e Corresponding author
700 1 _ |a Wischmeier, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wolfrum, E.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Frassinetti, L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Beurskens, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bilkova, P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Cavedon, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fischer, R.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kurzan, B.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Laggner, F. M.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a McDermott, R. M.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Tardini, G.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Trier, E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Viezzer, E.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Willensdorfer, M.
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1088/0741-3335/59/1/014017
|g Vol. 59, no. 1, p. 014017 -
|0 PERI:(DE-600)1473144-7
|n 1
|p 014017
|t Plasma physics and controlled fusion
|v 59
|y 2017
|x 1361-6587
856 4 _ |u https://juser.fz-juelich.de/record/835924/files/Dunne_2017_Plasma_Phys._Control._Fusion_59_014017.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/835924/files/Dunne_2017_Plasma_Phys._Control._Fusion_59_014017.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/835924/files/WPMST1CP16_15375_submitted.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:835924
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166412
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21