000835945 001__ 835945
000835945 005__ 20240625095031.0
000835945 0247_ $$2doi$$a10.1140/epjst/e2016-60311-8
000835945 0247_ $$2ISSN$$a1951-6355
000835945 0247_ $$2ISSN$$a1951-6401
000835945 0247_ $$2Handle$$a2128/14942
000835945 0247_ $$2WOS$$aWOS:000404918800006
000835945 037__ $$aFZJ-2017-05077
000835945 041__ $$aEnglish
000835945 082__ $$a530
000835945 1001_ $$0P:(DE-Juel1)169603$$aBaumgärtel, M.$$b0$$ufzj
000835945 245__ $$aMassively parallel simulations of strong electronic correlations: Realistic Coulomb vertex and multiplet effects
000835945 260__ $$aBerlin$$bSpringer$$c2017
000835945 3367_ $$2DRIVER$$aarticle
000835945 3367_ $$2DataCite$$aOutput Types/Journal article
000835945 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511936259_9737
000835945 3367_ $$2BibTeX$$aARTICLE
000835945 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835945 3367_ $$00$$2EndNote$$aJournal Article
000835945 520__ $$aWe discuss the efficient implementation of general impurity solvers for dynamical mean-field theory. We show that both Lanczos and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-time hybridization- and interaction-expansion) exhibit excellent scaling on massively parallel supercomputers. We apply these algorithms to simulate realistic model Hamiltonians including the full Coulomb vertex, crystal-field splitting, and spin-orbit interaction. We discuss how to remove the sign problem in the presence of non-diagonal crystal-field and hybridization matrices. We show how to extract the physically observable quantities from imaginary time data, in particular correlation functions and susceptibilities. Finally, we present benchmarks and applications for representative correlated systems.
000835945 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000835945 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000835945 536__ $$0G:(DE-Juel1)AICES-AACHEN-20170406$$aAICES Aachen Institute for Advanced Study in Computational Engineering Science (AICES-AACHEN-20170406)$$cAICES-AACHEN-20170406$$x2
000835945 588__ $$aDataset connected to CrossRef
000835945 7001_ $$0P:(DE-Juel1)168540$$aGhanem, K.$$b1
000835945 7001_ $$0P:(DE-Juel1)143858$$aKiani, A.$$b2$$ufzj
000835945 7001_ $$0P:(DE-Juel1)130763$$aKoch, E.$$b3$$ufzj
000835945 7001_ $$0P:(DE-Juel1)130881$$aPavarini, E.$$b4$$eCorresponding author$$ufzj
000835945 7001_ $$0P:(DE-HGF)0$$aSims, H.$$b5
000835945 7001_ $$0P:(DE-Juel1)144464$$aZhang, G.$$b6$$ufzj
000835945 773__ $$0PERI:(DE-600)2267176-6$$a10.1140/epjst/e2016-60311-8$$gVol. 226, no. 11, p. 2525 - 2547$$n11$$p2525 - 2547$$tEuropean physical journal special topics$$v226$$x1951-6401$$y2017
000835945 8564_ $$uhttps://juser.fz-juelich.de/record/835945/files/10.1140_epjst_e2016-60311-8.pdf$$yOpenAccess
000835945 909CO $$ooai:juser.fz-juelich.de:835945$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169603$$aForschungszentrum Jülich$$b0$$kFZJ
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143858$$aForschungszentrum Jülich$$b2$$kFZJ
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b3$$kFZJ
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b4$$kFZJ
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000835945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144464$$aForschungszentrum Jülich$$b6$$kFZJ
000835945 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000835945 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000835945 9141_ $$y2017
000835945 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835945 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000835945 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-SPEC TOP : 2015
000835945 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835945 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835945 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835945 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835945 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000835945 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000835945 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835945 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835945 920__ $$lyes
000835945 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000835945 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000835945 9801_ $$aFullTexts
000835945 980__ $$ajournal
000835945 980__ $$aVDB
000835945 980__ $$aI:(DE-Juel1)IAS-3-20090406
000835945 980__ $$aI:(DE-Juel1)JSC-20090406
000835945 980__ $$aUNRESTRICTED
000835945 981__ $$aI:(DE-Juel1)PGI-2-20110106