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Abstract. We discuss the efficient implementation of general impurity
solvers for dynamical mean-field theory. We show that both Lanczos
and quantum Monte Carlo in different flavors (Hirsch-Fye, continuous-
time hybridization- and interaction-expansion) exhibit excellent scaling
on massively parallel supercomputers. We apply these algorithms to
simulate realistic model Hamiltonians including the full Coulomb ver-
tex, crystal-field splitting, and spin-orbit interaction. We discuss how to
remove the sign problem in the presence of non-diagonal crystal-field
and hybridization matrices. We show how to extract the physically
observable quantities from imaginary time data, in particular correla-
tion functions and susceptibilities. Finally, we present benchmarks and
applications for representative correlated systems.

1 Introduction

The generalized Hubbard model is given by
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where cjmg creates an electron at site ¢ with orbital quantum number m and spin

o, tnzwm ., are the hopping integrals (i # ') and the elements of the crystal-field
matrices (i =4'), UZ, ., pp the local screened Coulomb tensor, and Hg. the double-

counting correction. Assuming that the electron-electron interaction retains spher-
ical symmetry, the Coulomb tensor for d electrons can be written in terms of
three Slater integrals, Fy, F» and Fy. For ty, or e, electrons only, the independent
parameters reduce to two. In the basis of real harmonics, the essential terms
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Fig. 1. The self-consistency loop in the DFT+DMFT approach with a quantum Monte
Carlo (QMC) impurity solver [8]. The method is also known as LDA + DMFT, as the local-
density approximation (LDA) is one of the most popular among the known approximations
to the exact DFT exchange-correlation functional.

are the screened direct Coulomb integrals Upm/mm: = U — 2J(1 — O, the ex-
change (Upmm/m'm = J), as well as the pair hopping (Unmm/m = J) and spin-flip
(Ummmm: = J) term. These can be expressed as linear combinations of Slater
integrals, with U = Fy + -5 (F> + Fy) and J = 55(3F; + 22Fy) for ty, states, while
J = 55(4F; 4+ 3 Fy) for e, states [1,2].

The one-electron parameters of the Hamiltonian (1), i.e., hopping integrals,
crystal-field splittings and spin-orbit couplings, can be obtained by building
Wannier functions that span the correlated bands, either using the downfolding ap-
proach based on the Nth-Order Muffin-Tin Orbital method (NMTO) [3,4] or the
maximally-localized Wannier function technique [5]. The calculation of the screened
Coulomb interaction would in principle require the full solution of the many-body
problem, and can only be achieved via approximate approaches; popular schemes [6,7]
are the constrained random-phase approximation (cRPA) or the constrained local-
density approximation (cLDA). The double-counting correction is also not known
exactly; if only correlated electrons of the same kind are retained, it amounts to a
shift of the chemical potential and can be neglected. In the more general case, approx-
imations such as the around-mean-field or the fully-localized Ansatz are used [6,7].

In dynamical mean-field theory (DMFT), the generalized Hubbard Hamiltonian
(1) is mapped onto a multi-orbital quantum-impurity problem, whose bath parame-
ters are determined via the self-consistency criterium (see Fig. 1), which requires that
the local lattice Green function equals the local impurity Green function [6,7]. The
complexity of the quantum-impurity problem increases dramatically with the number
of correlated sites and orbitals, the (lack of) symmetry of the Hamiltonian and the
type of Coulomb terms included in the calculation, as well as the strength of crystal-
field splittings and spin-orbit interaction. Depending on the approach used for solving
the quantum impurity problem, the principal numerical bottleneck can be either the
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computational time (quantum Monte Carlo methods) or the memory (exact diagonal-
ization or Lanczos). In the following we will review two particularly powerful general
DMFT solvers, discuss their efficient implementation on massively parallel machines,
and illustrate their abilities by presenting a number of paradigmatic applications.

2 The Lanczos approach

Using the Lanczos approach [9-11] we can find the ground state and spectral
function of many-body Hamiltonians of the type (1), including the generalized
quantum impurity problems at the core of the DMFT method [12]. The basic
idea for numerically exactly calculating the ground state is strikingly simple: The
vector (H — E[¥])|¥)/(T|¥) is the gradient of the energy expectation value
E[V] = (V|H|T)/(¥|T). Since the total energy functional E[¥]| has no local min-
ima, it can be minimized very efficiently by the method of steepest descent. Con-
vergence is even more rapid when the minimization is performed over all successive
gradient vectors simultaneously. For L steepest descent steps, starting from some
arbitrary normalized state |vg), this corresponds to minimizing the energy functional
on the (L + 1)-dimensional Krylov space KZ(|vg)) = span(|vo), H|vo), ..., H |vg)).
The Lanczos algorithm iteratively constructs an orthonormal basis of Krylov spaces
of increasing dimension L using the recursion

bn+1|'Un+1> = H|Un> - an‘vn> - bn|vn—1> ) (2)

where a,, = (v,|H|v,) while b,;1 is determined by the normalization of the new
basis vector. The starting vector |vg) must be normalized and we define |v_;) = 0.
Rearranging (2) it immediately follows that the Hamiltonian is a tri-diagonal matrix
H(L) in the L + 1-dimensional Lanczos basis:

Hlvn> = bnlvn71> + an|vn> + bn+1‘yn+1> . (3)

With increasing dimension of the Krylov space the lowest eigenvalue Eq(L) of H(L)
very rapidly approaches the ground state energy of H and the variational state
|To(L)) = ZrLL:O uo,n(L)|v,) constructed from the lowest eigenvector ug(L) of the
tridiagonal matrix H(L) gives, for increasing L, an excellent approximation to the
ground state |¥y) of H.

The Krylov space approach also provides rapidly converging approximations to
spectral functions by simply replacing the full spectrum in the Lehmann representa-
tion by the L + 1 eigenstates of H in KX(|¥,)):

L

Cule) = (Wl — H) ) = 3 Tl T ) “P ~ZM=GC<Z«>.

+— E
n=0 Ey,

Here the Krylov space is constructed starting from the (normalized!) state |¥.). To
see how the approximate spectral function A(w) approaches the true spectral function
A(w £ in) = FSIG(w * in) /7, we consider the m-th moment of A

L

/OO dww™A(w) = Z ‘“0,n|2(Evn)m = Z<qj6“ijn>(En)m<\Ijn|\PC> = (U |H™[T,).

e n=0
) (4)
Since H is the projection of the full Hamiltonian H onto KL(]¥.)), it follows by the
construction of the Krylov space that H™|¥.) = H™|¥,.) for all m < L. Thus the
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approximate spectral function A(w) correctly reproduces the moments 0, ...,2L of
the true spectral function.
The implementation of the Lanczos method for the Hubbard model

H=—t Y cep+Ud niny (5)

(i,3),0

is straightforward. The occupation number representation |nos, 715, . . .) for electrons
with spin o is interpreted as the bit representation of an integer i, = jMjo 27 so
that a many-body basis state can be characterized by a pair of integers

i) = [T (b)) TT (ch) ™ 100 (6)
k

For Ny and N electrons on M sites there are dim(#H) = M!/(N!/(M — Ny)!) x
M!/(N (M — N)! = dimy x dim| such states. The hopping term can only connect
basis states that differ in at most one electron. The simple density-density Coulomb
term is diagonal and easily evaluated by counting the set bits in (i &i;). Counting
bits is most efficiently done using the popcnt machine instruction. The full Coulomb
term connects states that differ in at most two electrons. This means that even in
the case of long-ranged hopping and Coulomb repulsion, for large systems, the many-
body Hamiltonian will be extremely sparse so that the matrix-vector products H|v,,)
that are at the core of the Lanczos approach can be calculated efficiently.

The Lanczos approach has a number of striking advantages: (i) it is conceptually
simple and easily implemented, (ii) it quickly converges to the ground state energy
and gives a good approximation of the ground state vector, and (iii) it allows to
accurately calculate spectral functions directly on the real axis. The main limitation
is caused by the need to handle many-body vectors: For a given electron density
the dimension of the Hilbert space increases exponentially with system size, limiting
Lanczos calculations to quite small systems. For half-filling, e.g., a single many-body
vector of a system with 12 orbitals requires just 6 MBytes of memory, for 18 orbitals
already 17 GBytes are needed, while for 24 orbitals it takes 53 TBytes.

In practice, Lanczos calculations are thus limited by the amount of memory that
can be efficiently accessed. The largest memories are available on modern super-
computers. This is the motivation for porting the Lanczos algorithm to massively
parallel machines. For shared-memory systems this can be done quite easily: When
calculating the matrix-vector product H|v,) in (2), different threads can work on dif-
ferent sections of the resulting vector independently. The off-diagonal elements of the
Hamiltonian (5) lead to non-local memory access of the many-body vector |v,,), but
the vector elements are only read, so that there is no need for locking. An OpenMP
parallelization thus only requires a single pragma for parallelizing the sparse matrix-
vector product. Parallelizing the scalar products required for obtaining the Lanczos
parameters a, and b, in a similar way, we obtain almost ideal speed-up on a wide
range of shared-memory systems. Unfortunately, such systems are limited to between
a few hundred to a thousand GBytes of memory, restricting calculations to at most
20 orbitals at half-filling. To go to even larger systems we need to find an efficient
distributed-memory implementation. A naive approach uses the MPI-2 extensions to
the Message Passing Interface which provide one-sided communication to emulate the
shared-memory strategy of directly accessing remote memory. In practical implemen-
tations this leads, however, to a severe speed-down, i.e., the more CPUs we use, the
longer we have to wait for the result.

An efficient distributed-memory implementation [13] is instead based on the fact
that hopping does not change spin. Hopping of the up-electron mixes only different
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Fig. 2. Transpose operation that makes memory access thread-local when calculating the
operation of the Hamiltonian on the state-vector. Each white box represents the amplitude
of a basis-state. The communication (red arrows) is realized by a call to MPI_A11toall. The
small grey arrows indicate the local operations needed to complete the matrix-transpose.

up-hopping configurations, while the down-electron configuration remains unchanged.
If we group all up configurations for a fixed down configuration together in a single
thread, this hopping can be carried out locally. Figure 2 illustrates how the amplitudes
of the 36 basis states |i+, 1)) of a half-filled 4-orbital system are distributed over three
nodes. Since all states with a fixed configuration of down-spin electrons i are stored
on a single node, the terms involving hopping of an up-spin electron can be done in
local memory. For the hopping of the down-spin electrons this is not true. Here we
would need to access amplitudes stored on different nodes. If we, however, exchange
the indices iy > iy, i.e., perform a transpose operation as indicated in Figure 2,
the terms involving the hopping of a down-spin electron can be performed in local
memory. Transposing again restores the original storage arrangement.

We use MPI_Alltoall to implement an efficient matrix transpose. This routine
sends data between all threads of the code and expects the data packages that will be
sent to a given thread to be stored contiguously in memory. As shown in Figure 2 this
is not quite the case since we actually store the down-spin amplitudes sequentially,
which is equivalent to a matrix that is stored column-wise. For MPI_Alltoall to work
properly, we would have to bring the data elements into row-major order. This could
be done by performing a local matrix transpose. The involved matrices are, however,
in general rectangular, leading to expensive local-copy and reordering operations. We
can avoid this by calling MPI_Alltoall for each column separately as indicated by
the red arrows in Figure 2. After this, only a local strided transposition has to be
performed (small white arrows) to obtain the fully transposed Lanczos vector. The
implementation described so far uses MPI_Alltoall which assumes that the matrix
to be transposed is square and that the dimension dimq = dim is divisible by the
number of MPI processes. To overcome these restrictions we have generalized the
algorithm to use MPI_Alltoallv, which allows the size of the data packages to depend
on the thread. This is the implementation that is used in practice.
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Fig. 3. Timings of the parallel implementation of the Lanczos algorithm for the Hubbard
model on the Jiilich IBM BlueGene. Sizes of a single state vector are 89 MBytes for the
system with 14 orbitals and 7 up- and down-spin electrons, 14(7,7), 1.2 GBytes for 16(8,8),
17 GBytes for 18(9,9), 254 GBytes for 20(10,10), 3.8 TBytes for 22(11,11), and 28 TBytes
for 24(10,10). Despite massive communication in each Lanczos iteration, the code shows
excellent speed up. Only when the message size per process becomes too small, performance
degrades due to network latency. This is shown in the lower plot. Properly scaling the
execution times we obtain a universal scaling (ParLaw) for system sizes ranging over more
than five and process counts ranging over three orders of magnitude.

Despite the massive communication that is involved in sending the entire many-
body vector across all the nodes, our approach shows an impressive performance on
massively parallel machines as can be seen in the upper panel of Figure 3: The speed-
up for a given problem size is nearly ideal until the node count becomes so large that
the individual messages that are sent become very small. In that regime the perfor-
mance is limited not by the bandwidth of the interconnect but by its latency. This
is shown in the lower panel of Figure 3: When the number of processes #MPI proc is
much larger than the dimension of one spin-configuration dim, ~ y/dim(#) the time
per iteration decreases linearly with message size. In this regime the speedup mea-
sures the bandwidth of the network. When the number of processes keeps increasing,
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the speedup is no longer linear, as for the resulting shorter and shorter messages the
network latency becomes more and more important. Figure 3 shows that timings of
problems with dimensions varying over more than five and processor counts varying
over more than three orders of magnitude show universal scaling. Here the size of a
single many-body vector varies from below 90 MBytes (14 sites with Ny =7 = N,)
to about 28 TBytes (24 sites with Ny = 10 = N|) while the number of nodes varies
between 64 and 65536. This allows us to predict the run-time of our code on even
larger problem sizes or processor counts.

3 General quantum Monte Carlo solvers

Quantum Monte Carlo methods are particularly well suited as impurity solvers for
realistic applications of the DFT + DMFT approach. Thus, we have implemented
general QMC solvers of different flavors: Hirsch-Fye QMC [14] and continuous-time
hybridization-expansion (CT-HYB QMC) as well as continuous-time interaction-
expansion (CT-INT QMC) [15-19]. These three approaches all have some advan-
tages and some disadvantages and complement each other. Here we will illustrate
in particular the generalized CT-HYB solver [17]. To this end, we first rewrite the
quantum-impurity Hamiltonian as the sum of three terms, the local Hamiltonian,
the bath Hamiltonian and the hybridization, H = Hioc + Hpath + Hiy- The first two
terms can be collected in Hy = Hpath + Hioe, Where

H0=Ze bTb,Y—i—Zsaacc + = ZZUaa@o—/c v CarCa

aa’ aa’
H[ = thb = ZZ CLb—y + hc] .

Here a = mo labels the ﬂavors, i.e., spin and orbital degrees of freedom and 7 is
the basis which diagonalizes the Hamiltonian describing the bath, Hya¢,. The term
aa = €aa— AED-C is the sum of the crystal-field matrix €,4, and of the system-specific
double-counting correction, As . The next step is the expansion of the partition
function in powers of Hj. In the 1nteract10n picture Hy(7) = e™Ho Hie=™Ho with g =
1/kpT this yields the series

oo (m) 1
Z = Z(_M/ dr Te T e P70 I HI(Ti)] :
m=0 i=m

where T is the time ordering operator, such that 7 = (71, 72, . . . 7, ) with 7,41 > 7; and

the integral is given by [ R - foﬁ dri...[ Tﬁ _, A7 Only even expansion orders

m = 2n (i.e., terms containing an equal number n of creation and annihilation opera-
tors both in the bath and impurity sector) contribute to Z. For a specific order m, we
define the n-dimensional flavor vectors a = (a1, 0a5...a,) and & = (@, @z ... ay),
where «; (@;) are the flavors of the n impurity annihilation (creation) operators at
imaginary times 7; (ﬂ) The partition function can then be written as

Z// drdr Zt 7) d3 (7, 7), (7)

where Zpain = Tr e #Hvatn | The term tgl)d(r, 7) is the trace over the impurity states

Zbath

() = Te T | e WHC (r)ek, (7)

i=n
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Here ¢ (1) = em(Hioe=1N) () g=(Hioc=#N) and N is the total number of electrons on
the impurity. The second factor is the trace over bath states, which is the determinant
of the n x n square hybridization-function matrix

A3 (7, 7) = det[FS'% (T, 7))

o,

with elements

_ _ V. 7@_,‘7 o *6767(7_—"'7‘”) Tyt — Tj > 0
{Fé‘ gc(‘r T)L/ = Fa,0,(Tr — 1) = E 17—’_167??7 % {eew(ﬁﬂﬂzn)) om0
) ~ 1 K3

Its Fourier transform Fy, (wy, ), where w,, is a fermionic Matsubara frequency, is related
to the inverse of the bath Green function G(wy,) by

VoaVia . . _
Fro(wn) = Z LEL = wnbaa—Esa—(G)za(wn) -

Wy — €y

In order to speed up the calculations, we exploit symmetries, splitting the sums
in decoupled blocks. Furthermore, for calculating the local trace we adopt a multi-
approach scheme. For local Hamiltonians that conserve the flavors, we use the fast
segment approach [15]. In this case the partition function can be expressed, for each
flavor a, in expansion orders n,

na)
H Z / drada | 0 (7,7) d) (7, 7).
Zbath ’ ’

a=1n,=0

Here T = Zi\l:al T, and o = Zi\’:al a,; the same kind of definition holds for 7 and &.
The local trace takes then the simple form

(n) <H sna> =2 aal [(5aa*ll)5a,a’+ (Ugara’atUsalaa’ )}laa,
129 a )

where [, is the length of the overlap of the 7 segments a and a’, s, = sgn(741 — Ta1) I8
the fermionic sign. In all other cases, i.e., when the local Hamiltonian mixes flavors, we
adopt the Krylov method [20]. In this approach, at the beginning of the DMFT loop we
compute all the eigenstates of Hioc, {| ¥, )}, and their energies { E,,}. To calculate the
trace at a certain order, a given state |¥,,) is initially propagated with e ~7+#=; the first
creation or annihilation operator met generates a new state |¥), which we propagate
via the Krylov approach obtaining |¥ (75 — 71)); the procedure continues until the last
creation or annihilation operator in the local trace is met. The calculation is performed
in the occupation number basis, so that all operators appearing in the calculations
are represented by sparse matrices. To exploit to the maximum efficient sparse-matrix
multiplication algorithms, we collect the states according to the symmetries of the
local Hamiltonian. Figure 4 shows the convergence of the Krylov procedure with the
number of Lanczos steps r. The propagation and creation/annihilation is carried out
from both the left and the right side of the trace; this minimizes the work-load to
measure the Green function. When possible — far from phase transitions — we use the
eigenvalues of H),. to adaptively truncate the outer bracket of the trace. Figure 5
shows in representative cases the performance of our CT-HYB QMC solver on the
massively parallel Jillich BlueGene/Q in comparison with the performance of the
Hirsch-Fye QMC solver on the same machine.
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Fig. 4. In order to calculate |¥(7)) = e o™ | W), we first construct the Krylov space of
order 7, i.e., the space spanned by |¥), Hioc|¥), H2.|T) ... Hf,.|¥). By means of the Lanczos
technique we build an orthonormal basis of such a space, in which the local Hamiltonian
Hioc is tridiagonal. The matrix exponential e”loc™ is then approximated by its projection
onto the Krylov space, so that [¢(7)) ~ [¥(7))r = > ;_se "= |[){{|¥), where {|I)} and {e;}
are the eigenstates and eigenvalues of the tridiagonal matrix Hioc. The figure illustrates
the convergence of A(r) =||¢¥(7))r — |¥(7))|. The plot was obtained for a representative
5-orbital model at half filling. Symbols in order of increasing size: 7 = 0.005, 0.05, 0.5, 5,
and 100. To best exploit the power of the method, we keep r flexible [17].
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Fig. 5. The figure shows the scaling of our CT-HYB QMC DFT + DMFT code on Blue-
Gene/Q [17]. Dark lines: CT-HYB Krylov solver with (empty symbols, K-t) and without
(full symbols, K) local trace truncation. Circles: two orbitals. Triangles: three orbitals. Light
lines: CT-HYB segment solver (S), 5-band model (pentagons). Black line: Hirsch-Fye (HF)
solver, 2 orbitals. All points were obtained from high accuracy calculations with comparable
error bars.

Concerning the minus sign problem, we find that it appears mostly when off-
diagonal crystal-field terms are present. Remarkably, we find that the sign problem is
strongly suppressed rotating the one-electron basis to crystal-field states, even when
the off-diagonal terms of the hybridization function matrix remain of comparable size
before and after the rotation [21]. We use this basis transformation to study, e.g., the
low-temperature ferromagnetic transition of the low-symmetry t%g system YTiOs,
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Fig. 6. YTiOs: ferromagnetic order parameter (fz4 states) as a function of temperature
calculated with the DFT4+DMFT approach. The theoretical transition temperature, Tc ~
50 K, slightly overestimates the experimental value T¢ ~ 30K [22].

one of the few ferromagnetic Mott insulators. Figure 6 shows that the theoretical
critical temperature is about 50K, in very good agreement with experiments [22],
which yield T ~ 30 K. For systems in which spin-orbit is included, we find that the
sign problem can be tamed by a unitary transformation to a basis in which the local
Green function is real. The specific form of the transformation will be discussed later,
in the subsection about the Fermi surface of SraRuOy [19]; the precise form of the
transformation depends on the system as can be seen by comparing to the case of
CasRuOy [23].

3.1 Generalized linear-response functions

In addition to single-particle Green functions, in order to compare with experiments,
linear-response functions are crucial. The local susceptibility tensor x*(7) can be
defined as follows [8]

X*(1) = (Tea, (T1)eh, (T2)ea, (73)cl, (74)) — (Teq, (T1)el, (72))(Tea, (Ts)eh, (1))

We define 7 = (71,72, 73,74) and a = (a1, as, a3, as) where the a; are flavors. The
Fourier transform to Matsubara frequencies yields x®(v), where v = (v, —v, —
Wiy Vn/ + Wiy —Vns), VU and vy, are fermionic and w,, bosonic Matsubara frequen-
cies. The local tensor elements build a square matrix [x(wm )|y N+ With elements
N = ain, asn, N' = azn’, ayn’. The local matrix x(w,,), calculated via QMC, does
not couple quantum-impurity blocks, which have dimension N.. In the local-vertex
approximation [24] the lattice susceptibility x(q;ws,) is given by the solution of the
Bethe-Salpeter equation

X(a5wm) = xo(q; wm) + X0(q; wim )T (wWm)x (s wim) - (8)

The equation is illustrated diagrammatically as a Dyson-like series in Figure 7. The
terms X (q;wm), Xo(q; wm ), and I'(w,,) are all N x N matrices; the elements of the
matrix xo(q; wm,) can be written as

1
[XO(qa wm)}NJV' = ﬂénn'5020350104ﬁk Z G,Ocz;rtgg (V” + wm)ngLch (Vn) ) (9)
k



Dynamical Mean-Field Approach with Predictive Power 2535

k+q k'+q
- Vn+Wm
Vn’
k+q k+q k+q k'+q
Vn+Wm Vn+Wm  Vn+@Wm —> — Vn+Wm
a a 1%
Xo + Xo T
v d V’ % v a V’ v
n K n n o .

Fig. 7. The Bethe-Salpeter equation [8].

where Ggiaj(yn) is the DMFT (or, depending on the case, cellular DMFT) lattice

Green function. The local vertex matrix I'(w,,) can be obtained by solving the local
Bethe-Salpeter equation within a quantum-impurity block

X(wm) = Xo(wm) + X0 (Wm)T'(wm)X(wm) (10)
with

o)l = 37 > ol

By replacing the vertex tensor

L(wm) = [xo(wn)] ™ = X(wm)] ™

in equation (8) we obtain the lattice susceptibility tensor [x(q;wm)]n,n7. The most
time-consuming part is the computation, via QMC, of the local susceptibility tensor;
to speed up the calculations we again use symmetries and have optimized our code for
modern massively parallel architectures. Finally, we use the Filon-trapezoid method
to minimize the time required to perform the Fourier transform to Matsubara space
as well as an extrapolation scheme to sum up Matsubara frequencies. This approach
is implemented in our generalized HF-QMC solver [25].

4 Applications

In this section we present a selection of representative applications that highlight the
capabilities of our generalized impurity solvers. First we analyze the mechanism of
orbital order in correlated insulators, comparing the strength of Kugel-Khomskii
super-exchange and of mechanisms that are driven by lattice distortions. Next we
turn to correlated metals, analyzing the interplay of crystal-field splitting, spin-orbit
coupling, and Coulomb correlations (and in particular its low-symmetry terms) on
the Fermi surface of SroRuQ4. Finally we study the degree of frustration in two-
dimensional layered vanadates via the calculation of the magnetic response function.
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Fig. 8. Orbital ordering in KCuF3 (left) and lattice distortions (right) [26].

4.1 The origin of orbital ordering

Orbital ordering phenomena are very common in Mott insulators with orbital degrees
of freedom and they are believed to play a crucial role in determining their magnetic
and electronic properties. Despite of the importance of the phenomenon, the origin
of orbital order has been debated for decades. Two rather different mechanisms have
been proposed to explain it. The first is based on the Jahn-Teller theorem, and is
well presented in a seminal work of Kanamori [27]. In this view, in the presence of
orbital degeneracy, electron-phonon coupling yields a Jahn-Teller distortion, and thus
gives rise to an ordered pattern of occupied or empty orbital states in localized sys-
tems. Recently, it has been shown via DFT4+DMFT that Coulomb repulsion strongly
enhances orbital-order in the presence of a small crystal-field splitting [3,4], so that
even a correspondingly small static distortion can lead to orbital order at rather high
temperatures. The second mechanism, due to Kugel and Khomskii [28], takes a quite
different perspective. In this view the orbitally ordered state forms because of multi-
orbital super-exchange, a purely electronic many-body effect, after which the systems
undergoes a Jahn-Teller-like distortion as a consequence of the electronic order. Since
the two mechanisms yield often the same final state, it is difficult to say, based on
experiments only, which mechanism drives the transition [29].

The two paradigmatic and most studied compounds are the ey systems KCul'
(t3,€3) and LaMnOs (t5,e}). For both materials, DFT + U calculations have shown
that the Coulomb interaction stabilizes the Jahn-Teller distortion [30,31]. This lead
early-on to the conclusion that the Kugel-Khomskii mechanism drives the transi-
tion [30]. The DFT+U approximation is, however, based on a Hartree-Fock treatment
of Coulomb effects, and yields an electronic gap only at the price of introducing long-
range magnetic order, while in the real materials orbital order is retained well above
the magnetic phase. One could thus conjecture that the results obtained via DFT + U
are a spurious effect of the approximation. They were, however, recently confirmed via
finite-temperature DFT+DMFT calculations for the paramagnetic phase [32], which
yield basically the same energies and ground state geometries as DFT+U, indicating
that the Hartree-Fock approximation gives reliable results for these properties. This
somewhat unexpected result, as will become clear below, is due to the smallness of the
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Fig. 9. LaMnOs: Kugel-Khomskii energy gain AE (upper panel) and orbital polariza-
tion p (lower panel) as a function of the temperature T, calculated via the DFT + DMFT
approach [21]. We find that Tk ~ [2AE|/kp, where Tkk is the transition temperature
determined from p(7T).

energy gained by Kugel-Khomskii orbital polarization, which for the case of LaMnOj;
is shown in Figure 9.

Although these studies show that the Coulombic electron-electron repulsion plays
a key role, they did not really clarify what the main mechanism is. Coulomb repulsion
could, as a matter of fact, help to stabilize the Jahn-Teller structure for other reasons
than the Kugel-Khomskii super-exchange mechanism. Furthermore, the fact that the
magnetic ordering temperature is small, e.g., 40 K in KCuF3, while orbital order per-
sists up to the melting temperature, makes it difficult to explain both phenomena
via super-exchange interaction. In order to clarify this problem, we devised a scheme
to separate the effects of Kugel-Khomskii super-exchange from the rest. We achieved
this via the construction of a series of idealized structures in which the Jahn-Teller
distortion is progressively reduced to zero. In the undistorted limit, we calculate the
order parameter p (the orbital polarization), as a function of temperature and thus
determine the critical temperature Tk for the pure Kugel-Khomskii mechanism (see,
e.g., Figs. 9 and 10). With this approach, we find that Tkk is 350K [26] in KCuF;
and Tkk ~ 600 — 700K [33] in LaMnOg; the results for the latter are presented in
Figure 10. This shows that Kugel-Khomskii super-exchange is remarkably strong,
but not sufficient to induce an orbital-ordered phase which persists to the melting
temperature, as reported experimentally. It also shows that Kugel-Khomskii super-
exchange plays a larger role in LaMnOj3 than in KCuF3. The case of LaMnQOj is more
complicated than the one of KCuF3, and this has two reasons. First, the ¢, states
are half-filled, and interact with the e, states via the Coulomb interaction; however,
since the t9,4 states are much lower in energy than the eg4, they can be treated in first
approximation as local effective spins S = 3/2 interacting with e, electrons, so that
one can show that an e, model with renormalized hoppings and an effective mag-
netic field [34] is sufficient to describe the low-energy properties. Second, apart from
the Jahn-Teller distortion, other distortions are present (tilting and rotation of the
octahedra and orthorhombic distortions), which lead to a bandwidth reduction and
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Fig. 10. Kugel-Khomskii transition and orbital rotation in LaMnOs [33]. Left: order para-
meter, i.e., the orbital polarization p, as a function of temperature. Right: occupied state as
a function of temperature. Iy: idealized structures with no distortions. Ry: idealized struc-
ture with no Jahn-Teller distortion. Filled circles: calculations for U = 5 eV. The occupied
orbital is defined as |0) = cos §|32> — r?) + sin £|z* — y*), and the angle 6 for the different
structures is given in the right panel. For the Ry structure a change in 6 is found at Tkxk.
The ideal angle for a pure Kugel-Khomskii mechanism is 90°.

an additional crystal field, whose symmetry differs from the one of the Jahn-Teller
mode [3,4,33]. In order to account for those distortions and their effect, we performed
calculations for idealized structures in which only the Jahn-Teller interaction is pro-
gressively removed. These structures yield, as discussed, a crystal-field splitting of e,
states, hence an orbital polarization is present at any temperature. The onset of the
super-exchange regime, and thus the super-exchange critical temperature Tkk, can
in this case be determined only by the change in the occupied orbital character which
occurs when decreasing the temperature; we find that, indeed, at Tkk, the occupied
orbital rotates towards the state predicted by the super-exchange interaction. This
can be seen in the right panel of Figure 10.

Remarkably, in the case of LaMnQjs, while Jahn-Teller distortions survive in nano-
clusters up to 1000K or more [35], an order-to-disorder distortion is observed at
Too ~ 750K [36]; our calculated Tkk is very close to Too. Could it be that super-
exchange is driving such a transition? To answer this question we calculated Txk
for representative elements of the REMnOj series (rare earths RE = La, Nd, Tb,
Dy), systems for which Too has been measured [37-40]. The results are shown in
Figure 11. The figure shows that the super-exchange transition temperature Tk is
basically independent of the rare-earth ion, while Tpo strongly increases when the
rare-earth radius decreases. This lead us to the conclusion that super-exchange alone
cannot explain the observed trends in Too and thus the fact that Too ~ Tkk in
LaMnOs is accidental. This study was based on an e, Hubbard model in which the
tyy electrons were treated as local effective spins S = 3/2. More recently, thanks to
our generalized CT-HYB QMC solver, we confirmed these conclusions using the full
5-band Hubbard model [17].

If super-exchange is not the main mechanism, is it simply Kanamori’s Jahn-Teller
mechanism? To find an answer to this question we re-analyzed the case of KCuF3 [41],
for which, against all expectations, orbital ordering persists to melting. Actually, the
transition to a symmetric phase is not simply absent, but the Jahn-Teller distor-
tion parameter, in fact, increases with temperature. Applying hydrostatic pressure,
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Fig. 11. Super-exchange transition temperature Txk for representative elements of the
ReMnOs series. Also shown (crosses) are experimental orbital-order to orbital-disorder
transition temperatures, Too [21]. For LaMnOsg circles of decreasing size are theoretical
results for increasing pressures, from ambient pressure to 9.87 GPa.

instead, reduces the order parameter, while chemical pressure, replacing K with the
larger ions Rb or NHy increases it. This shows that the structural change is hardly
affected by thermal effects, instead the lattice constant plays the dominant role. The
increase of the order parameter with temperature thus appears to be a consequence of
thermal expansion. The two established mechanisms, Kugel-Khomskii super-exchange
and the Jahn-Teller mechanism cannot explain this behavior. Super-exchange de-
creases with distance and for the Jahn-Teller mechanism we would have to assume a
completely unrealistic softening of the distortion mode with lattice constant. Instead,
we find a new mechanism for ionic Mott insulators, where the energy gain from the dis-
tortion is driven by the crystal-field splitting and the Ewald energy of the shifted ions
while it is opposed by the Born-Mayer repulsion of the electron clouds of the F and
Cu ions. Such a model can accurately reproduce the energy curves calculated within
DFT+U, which describe the experimental structures very well. Since the Born-Mayer
potential increases rapidly at short distances, we find that the short Cu-F distance is
nearly constant, independently of temperature and hydrostatic or chemical pressure.
Moreover, the Cu—F repulsion is essentially a property of the touching ions, which
explains why an almost constant short Cu-F distance is found in a whole variety
of compounds with copper ions surrounded by fluorine octahedra, but of otherwise
widely varying composition. We note that the structures calculated in DFT+U are
fairly robust under changes of U as long as the parameter is large enough to open a
gap. The essential effect of increasing the Coulomb term is to slightly increase the size
of the Cu*" ion [42]. Our new mechanism in which only the Born-Mayer repulsion
stabilizes the undistorted phase suggests the following intriguing scenario: Since the
contribution of the Born-Mayer term at the undistorted position decreases exponen-
tially with the distance of the ions, even for non-Jahn-Teller-active ions the Ewald
energy can drive a distortion once the lattice constant becomes large enough. The
result would be an inverted phase transition: no distortion at low temperature, while
thermal expansion would induce a distortion above some critical temperature.

4.2 The fermi surface of Sr,RuQy: spin-orbit and Coulomb anisotropy effects
The single-layered ruthenate SroRuOy4 (t‘%g electronic configuration) exhibits an amaz-

ing range of exotic properties, among which are low-temperature p-wave supercon-
ductivity [43-46], Hund’s metal physics [47] and other anomalous behavior [48,49],
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as well as a peculiar Mott metal-insulator transition after Sr—Ca substitution [50].
These surprising effects are believed to stem from the atypical low-energy electronic
structure of this material, made of a quasi-two-dimensional zy band and two quasi-
one-dimensional zz/yz bands. In order to understand the low-energy properties of
SroRuOy, the description of its Fermi surface (F'S) is crucial. It is thus not a surprise
that the latter has been investigated intensively, both experimentally and theoret-
ically. Angle-resolved-photoemission spectroscopy (ARPES) measurements [51] re-
vealed early-on the presence of three Fermi sheets, the so-called v (zy), and « and (3
(zz,yz) sheets. First principles calculations based on DFT in the local-density approx-
imation (LDA) qualitatively reproduce the experimental FS, provided that the spin-
orbit (SO) interaction is taken into account [52,53]. They fail, however, in describing
the relative size of the three sheets, suggesting that many-body effects could play an
important role. In order to identify the actual part of the electron-electron interaction,
we recently analyzed the problem by means of the DFT + DMFT approach, account-
ing for spin-orbit interaction and a realistic Coulomb tensor. First, we performed LDA
and LDA + SO calculations using the full-potential linearized augmented plane-wave
method as implemented in the WIEN2K [54] code. We obtained localized to;, Wan-
nier functions via the Marzari-Vanderbilt localization procedure [5,55,56] and using
symmetries. Because of the Dy;, symmetry at the Ru site, the Wannier ¢, states split
into an e, doublet (zz,yz) and a by, singlet zy. The tetragonal crystal-field splitting,
ECF = €z — Egy, 15 120meV in LDA. We find that the LDA spin-orbit coupling is ba-
sically isotropic, with the value Ay ~ A, ~ 100 meV. For what concerns the screened
Coulomb tensor, it is typically assumed that the symmetry is O(3), since the bare
electron-electron interaction is spherical; in this commonly adopted approximation
all terms relevant for the to, states can be expressed as a function of two parameters,
U and J, as discussed in the introduction. Once constructed, we solve the material-
specific to; Hubbard model (1) with DMFT via our CT-INT quantum Monte Carlo
quantum-impurity solver [18,19]. In the case of SryRuO,4 the self-energy matrix in
spin-orbital space is a 6 X 6 self-energy matrix. We performed the calculations with
spin-orbit coupling in the basis |m), = T|m>g, where the unitary operator 7" is chosen
such that the local imaginary-time Green function matrix is real. For SroRuQy4 this
transformation merely amounts to an extra (—1)?7 phase (where o = 1 for spin up
and ¢ = —1 for spin down) for the |zz), orbital.

The reshaping of the Fermi surface due to electron-electron correlation arises,
for a Fermi-liquid in the zero-temperature limit, from the change in the elements of
the onsite Hamiltonian via the real-part of the self-energy matrix. For SroRuQO4 in
particular, the following parameters are relevant

ecr — ecr + Aecr, )\my — )\xy + A/\g,;y7 A — A+ AN,

We calculated them with LDA + DMFT extrapolating to the 7' — 0 limit. Figure 12
summarizes the results. It shows (panels a and b) the Fermi surface obtained in LDA
without (a) and with (b) SO interaction as well as the corresponding LDA+DMFT
results (panels ¢ and d). The right side of the figure shows LDA+DMFT calcula-
tions for (U, J) = (2.3,0.4) eV, the constrained random-phase-approximation (cRPA)
estimate [57], while the left side exhibits calculations for (U,J) = (3.1,0.7) eV, the
constrained LDA estimate [58]. ARPES data from reference [51] are also shown (grey
map) for comparison. The figure shows that LDA describes well the o and v sheets;
however, the 3 and 7 sheets cross, in contrast to ARPES, and the area enclosed by
the 3 sheet is larger in LDA than in ARPES. Accounting for the spin-orbit interaction
removes the crossing and strongly improves the agreement, but the 3 sheet remains
too large with respect to experiments. These results are in line with previous LDA
and LDA4SO calculations [52,53]. Remarkably, further including the O(3) Coulomb
interaction does not really improve the agreement. The LDA + DMFT Fermi surface
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Fig. 12. SroRuOy: Fermi surface from (a) LDA, (b) LDA + SO, (c¢) LDA + DMFT and (d)
LDA + SO + DMFT calculations performed with O(3)-symmetric Coulomb matrix, (U, J) =
(3.1,0.7) eV (left) and (U, J) = (2.3,0.4) eV (right), T'— 0 limit [19]. Light lines: a and
sheets. Dark lines: v sheet. Grey density maps: experimental data taken from reference [51].

deviates from ARPES in particular around the M point (y sheet), which approaches
the boundary of the first Brillouin zone. In the LDA + SO + DMFT calculation,
with respect to LDA4+DMFT results, the agreement worsens for the v sheet and it
improves for the « and ( sheets. These results indicate that an important mechanism
is missing.

We have identified it in the Dgyp,-symmetric Coulomb terms, which account for the
actual site symmetry of the Coulomb tensor. More specifically, important Coulomb
parameters are AU = Uy zy — Uzz 0. and AU’ = Uyy 4> — Uy .. Due to the elonga-
tion of the RuO bond in the c direction, the e, (2z,yz) Wannier orbitals have a larger
spread than the xy orbital, suggesting positive AU and AU’. This is in line with the
results of cRPA calculations [57], AU ~ 0.3eV. Coulomb low-symmetry terms yield,
differently from the O(3) terms, an orbital-dependent double-counting correction Hyc.
For the latter we adopt the around-mean-field approximation, a typical choice for
correlated metals, which yields Hqe = § [AU +2AU’| >, 77, , where n =4 is the
number of ty, electrons. By performing a set of LDA + DMFT and LDA + SO +
DMFT results for several values in the range 0 < AU < 0.45eV, we could estimate a
realistic range of on-site parameter enhancements, with Aecr in the interval [-0.08,-
0.02] eV, AX;, and A); in the intervals [0.10,0.16] €V and [0.04,0.08] V. In this range
the theoretical Fermi surface is in good agreement with experiments, as shown in a
representative case in Figure 13.

To summarize, we have shown that including the effects of the spherically-
symmetric (point group (O(3)) Coulomb interaction alone does not improve the agree-
ment between theoretical and experimental Fermi surface. It is essential to take also
into account both the spin-orbit interaction and Dyp-symmetric terms of the Coulomb
tensor. The O(3) terms enhance the crystal-field splitting and the spin-orbit coupling.
The Coulomb-enhanced spin-orbit coupling shrinks the § sheet and extends the -y
sheet. The Dy, term AU reduces the Coulomb crystal-field enhancement. Similar
effects are likely to occur in many other multi-orbital correlated metals. For SroRuQOy,
our results support the recent suggestions of strong spin-orbital entanglement for
Cooper pairs [59]. The full Coulomb vertex is important not only for strongly corre-
lated metals but also for insulators, as we have shown, e.g., in the case of spin-state
transition cobaltates [60].
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Fig. 13. SraRuOg4: Fermi surface from LDA+4+SO+DMFT calculations performed with
Dy4p, Coulomb vertex, T"— 0 limit. Grey density maps: experimental data taken from
reference [51]. Shown is a representative calculation corresponding to AU = 3AU’ = 0.3eV
(parameters: Aecr ~ —0.02eV , Adgy ~ 0.13eV, A\, ~ 0.08eV) [19].

4.3 Are layered vanadates 2-dimensional frustrated systems?

The layered vanadates Li;VOSiO4 and VOMoO, (see Fig. 14) have been proposed
as possible realizations of the two-dimensional J;-J2 quantum Heisenberg model
[61-64]. The analysis of early experiments supported a strong frustration picture
(with J; ~ J3). Nuclear magnetic resonance (NMR), muon-spin rotation and thermo-
dynamic measurements lead to the estimates J; + Jo ~ 8.5 K and Jo/J; ~ 1.1 [62,63].
Similar conclusions, although with sizably larger couplings, J; + Jo ~ 155K and
J1 ~ Ja, were reached for VOMoQO, [64]. Furthermore, in both systems, small sat-
urated magnetic moments have been inferred from thermodynamic data [62-64],
a typical signature of strong frustration [65]. Remarkably, a very different pic-
ture emerged from ab-initio studies based on density-functional theory [64,66,67],
which placed both systems in the weakly frustrated regime, with Jo/J; ~ 12 for
Lio VOSiOy4 (collinear regime), and Jo/J1 ~ 0.2 for VOMoO, (Néel antiferromagnetic
regime). Later-on, a high-temperature expansion study of the J;-J; Heisenberg model
pointed out that the experimental specific heat and susceptibility of Lio VOSiO,4 from
references [62,63] could be also compatible with large Jo/J; values obtained in DFT
calculations [68]. More recently, neutron diffraction and resonant X-ray scattering ex-
periments have reported magnetic order in three dimensions for both systems [69,70].
These theoretical and experimental results, taken together, suggest a weak frustration
scenario.

This conclusion strongly relies, however, on the DFT estimate of the hopping inte-
grals and the associated magnetic exchange couplings of the J;-J; Heisenberg model.
It becomes therefore crucial to put the latter to a test. Recently we have addressed
this issue via the DFT+DMFT method, calculating the effective spin model via linear
response theory. To this end, the minimal material-specific many-body model is the
half-filled one-band Hubbard model describing the zy low-energy states. By using
linear response-function theory on top of DFT+DMEFT calculations we first calcu-
late the local correlation function, which yields the effective moments, showing that
charge-fluctuations are negligible and that the layered vanadates behave indeed as a
set of local S = 1/2 spins for all realistic U values. Next we calculated the magnetic
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Fig. 14. The crystal structure of LioVOSiO4. The crystal structure of VOMoOQy is similar,
the main difference being that the VO5 pyramids point away from the interior of the layer
and are slightly rotated.

susceptibility in the high-temperature (7" > T) regime, showing that it scales as
w?/(T — J(q)/u?), where u is the effective magnetic moment with p? = S(S +1)/3.
This enables us to extract the actual effective super-exchange coupling J(q), including
non-trivial many-body effects, and construct the effective super-exchange magnetic
model. As a final result, we find that for both systems considered

1/2
. Jiz Jiz\*
J(q) ~ 4J; cos Io s L 1142782 cos g+ (= + 2J5(cos gz + cos qy)
2 2 J1 Jl
+2J, cosq, + 4J2,(cos ¢, + cosqy) cosg, + .. .. (11)

Longer range terms are small and can be neglected. The Fourier transform of J(q)
to real space yields the couplings of a generalized quantum Heisenberg model. The
magnetic response function for VOMoOQ, is shown in Figure 15. Our calculations [25]
support a weak frustration picture for both vanadates, with a small but non-negligible
degree of three-dimensionality, which fully account for the three-dimensional magnetic
order reported in experiments. Although weak, the frustration is large enough to
explain the partial reduction of the ordered magnetic moments measured via neutron
scattering experiments [69, 70].

5 Conclusions

We have shown that massively parallel algorithms in combination with a multi-solver
technique are key for solving complex many-body problems in real materials. This
approach is then used to tackle problems that would be otherwise out of reach. Our
generalized Lanczos solver is ideal for the very low-temperature regime [12,13], and



2544 The European Physical Journal Special Topics

Fq,=m/2

Xo/XA

XAa

0]

I; M M

X X

Fig. 15. The static uniform magnetic susceptibility of VOMoO, in the g, gy plane for
representative values of ¢., T~ 380K (T'> Twn) and U =5eV. Shown is x(q;0)/xa(0)
where x.4(0) ~ p?/kpT is the atomic susceptibility in the local spin (large BU) limit. For each
value of ¢, the top (bottom) panel shows the result without (with) local vertex correction.
The special points in the ¢z, gy plane are I'y = (27, 0), X= (7, 0) and M= (m, 7).

allows us to reliably treat large systems. For intermediate and high temperatures, com-
bining our three quantum Monte Carlo solvers [17,19] allows us to study problems
which involve general Coulomb interaction with crystal-field matrices and spin-orbit
coupling, cluster DMF'T, and linear response-function calculations. We have presented
results for paradigmatic applications which showcase the advantages of our massively-
parallel multi-solver approach. First we address the origin of orbital order, a problem
which has been debated for decades. To solve it required calculations involving 2 to
5 orbitals, full Coulomb vertex and crystal-field matrix, and 2-4 sites. Our calcu-
lations [17,21,26,33] show that the Kugel-Khomskii super-exchange alone, although
very strong, cannot explain orbital order in the two textbook examples of orbitally
ordered materials, LaMnO3 and KCuF3. This ultimately lead us to propose [41] for
KCuF3 an alternative mechanism, which explains the absence of an orbital-ordering
transition in this material. The second application is the riddle of the Fermi surface of
SroRu0y, a system famous for exhibiting p-wave superconductivity. The Fermi surface
of SroRuQO4 has been studied for decades, but the role of Coulomb interaction and its
interplay with spin-orbit coupling were not fully understood. To solve this problem,
we performed calculations involving three orbitals, crystal-field splitting, spin-orbit
interaction, and low-symmetry Coulomb interactions. For the latter, we additionally
generalized the around-mean-field approximation in order to properly account for
the double-counting correction. Our study [19] lead us to identify the effect of spin-
orbit and high- and low-symmetry Coulomb terms and their interplay. For the last
application we chose layered vanadates, systems which had been proposed as pos-
sible candidates for highly-frustrated materials. By calculating correlation functions
and high-temperature linear response functions, we could construct material-specific
spin models for these systems. The latter lead us to conclude that these systems are
well described by a weak frustration scenario. Finally, QMC solvers are very power-
ful but they are also hampered by the infamous sign problem. We have shown how,
in specific cases, the sign problem can be strongly reduced by changing the orbital
basis in which the calculation is set up; e.g., in the presence of a crystal field, this
can be achieved rotating to the basis in which the crystal-field matrix is diagonal
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(although the hybridization function remains non-diagonal) [17] or, in the presence of
spin-orbit interaction, to the basis which makes the local Green function real [19,23].
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