000835959 001__ 835959
000835959 005__ 20240712100956.0
000835959 0247_ $$2doi$$a10.5194/acp-2017-566
000835959 0247_ $$2ISSN$$a1680-7367
000835959 0247_ $$2ISSN$$a1680-7375
000835959 0247_ $$2Handle$$a2128/15105
000835959 0247_ $$2altmetric$$aaltmetric:21492043
000835959 037__ $$aFZJ-2017-05091
000835959 082__ $$a550
000835959 1001_ $$0P:(DE-Juel1)164575$$aStadtler, Scarlet$$b0
000835959 245__ $$aOzone Impacts of Gas-Aerosol Uptake in Global Chemistry Transport Models
000835959 260__ $$aKatlenburg-Lindau$$bEGU$$c2017
000835959 3367_ $$2DRIVER$$aarticle
000835959 3367_ $$2DataCite$$aOutput Types/Journal article
000835959 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518072336_26005
000835959 3367_ $$2BibTeX$$aARTICLE
000835959 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835959 3367_ $$00$$2EndNote$$aJournal Article
000835959 520__ $$aThe impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, EMEP MSC-W and ECHAM-HAMMOZ. Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3 and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modeled surface area density Sa of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in East Asia.The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3 and HO2 heterogeneous reaction gain relevance particularly in East Asia due to the presence of high NOx concentrations and high Sa in the same region, although ECHAM-HAMMOZ showed much stronger responses than EMEP in this respect. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with biggest impacts on O3 in spring time when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated.
000835959 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000835959 536__ $$0G:(DE-Juel1)jicg23_20151101$$aChemical processes in the troposphere and their impact on climate (jicg23_20151101)$$cjicg23_20151101$$fChemical processes in the troposphere and their impact on climate$$x1
000835959 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000835959 588__ $$aDataset connected to CrossRef
000835959 7001_ $$0P:(DE-HGF)0$$aSimpson, David$$b1$$eCorresponding author
000835959 7001_ $$0P:(DE-Juel1)16212$$aSchröder, Sabine$$b2
000835959 7001_ $$0P:(DE-Juel1)167439$$aTaraborrelli, Domenico$$b3
000835959 7001_ $$0P:(DE-HGF)0$$aBott, Andreas$$b4
000835959 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin$$b5
000835959 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2017-566$$gp. 1 - 35$$p1 - 35$$tAtmospheric chemistry and physics / Discussions$$v566$$x1680-7375$$y2017
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.pdf$$yOpenAccess
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.gif?subformat=icon$$xicon$$yOpenAccess
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000835959 8564_ $$uhttps://juser.fz-juelich.de/record/835959/files/acp-2017-566.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000835959 909CO $$ooai:juser.fz-juelich.de:835959$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000835959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164575$$aForschungszentrum Jülich$$b0$$kFZJ
000835959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16212$$aForschungszentrum Jülich$$b2$$kFZJ
000835959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167439$$aForschungszentrum Jülich$$b3$$kFZJ
000835959 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b5$$kFZJ
000835959 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000835959 9141_ $$y2017
000835959 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000835959 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000835959 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000835959 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000835959 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000835959 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000835959 920__ $$lyes
000835959 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000835959 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000835959 9801_ $$aFullTexts
000835959 980__ $$ajournal
000835959 980__ $$aVDB
000835959 980__ $$aI:(DE-Juel1)IEK-8-20101013
000835959 980__ $$aI:(DE-82)080012_20140620
000835959 980__ $$aUNRESTRICTED
000835959 981__ $$aI:(DE-Juel1)ICE-3-20101013