001     835982
005     20240711113518.0
024 7 _ |a 10.1088/1741-4326/aa6609
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/14954
|2 Handle
024 7 _ |a WOS:000398304900003
|2 WOS
024 7 _ |a altmetric:18470010
|2 altmetric
037 _ _ |a FZJ-2017-05107
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Wurden, G. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Limiter observations during W7-X first plasmas
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1500987304_25571
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). We observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers. Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2×  variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency  >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Biedermann, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Effenberg, F.
|0 P:(DE-Juel1)137057
|b 2
700 1 _ |a Jakubowski, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Niemann, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stephey, L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bozhenkov, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 7
|e Corresponding author
700 1 _ |a Fellinger, J.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Cannas, B.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Pisano, F.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Marsen, S.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Laqua, H. P.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Harris, J. H.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Unterberg, E. A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a König, R.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Schmitz, O.
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1088/1741-4326/aa6609
|g Vol. 57, no. 5, p. 056036 -
|0 PERI:(DE-600)2037980-8
|n 5
|p 056036
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/835982/files/Wurden_2017_Nucl._Fusion_57_056036.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:835982
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21