000835983 001__ 835983
000835983 005__ 20240711113518.0
000835983 0247_ $$2doi$$a10.1088/1741-4326/aa6451
000835983 0247_ $$2ISSN$$a0029-5515
000835983 0247_ $$2ISSN$$a1741-4326
000835983 0247_ $$2WOS$$aWOS:000399125300003
000835983 0247_ $$2altmetric$$aaltmetric:23204653
000835983 037__ $$aFZJ-2017-05108
000835983 041__ $$aEnglish
000835983 082__ $$a530
000835983 1001_ $$0P:(DE-HGF)0$$aDing, R.$$b0$$eCorresponding author
000835983 245__ $$aAdvances in understanding of high- Z material erosion and re-deposition in low- Z wall environment in DIII-D
000835983 260__ $$aVienna$$bIAEA$$c2017
000835983 3367_ $$2DRIVER$$aarticle
000835983 3367_ $$2DataCite$$aOutput Types/Journal article
000835983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500987591_25566
000835983 3367_ $$2BibTeX$$aARTICLE
000835983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835983 3367_ $$00$$2EndNote$$aJournal Article
000835983 520__ $$aDedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.
000835983 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000835983 588__ $$aDataset connected to CrossRef
000835983 7001_ $$0P:(DE-HGF)0$$aRudakov, D. L.$$b1
000835983 7001_ $$0P:(DE-HGF)0$$aStangeby, P. C.$$b2
000835983 7001_ $$0P:(DE-HGF)0$$aWampler, W. R.$$b3
000835983 7001_ $$0P:(DE-HGF)0$$aAbrams, T.$$b4
000835983 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b5$$eCorresponding author
000835983 7001_ $$0P:(DE-HGF)0$$aBriesemeister, A.$$b6
000835983 7001_ $$0P:(DE-HGF)0$$aBykov, I.$$b7
000835983 7001_ $$0P:(DE-HGF)0$$aChan, V. S.$$b8
000835983 7001_ $$0P:(DE-HGF)0$$aChrobak, C. P.$$b9
000835983 7001_ $$0P:(DE-HGF)0$$aElder, J. D.$$b10
000835983 7001_ $$0P:(DE-HGF)0$$aGuo, H. Y.$$b11
000835983 7001_ $$0P:(DE-HGF)0$$aGuterl, J.$$b12
000835983 7001_ $$0P:(DE-Juel1)2620$$aKirschner, A.$$b13
000835983 7001_ $$0P:(DE-HGF)0$$aLasnier, C. J.$$b14
000835983 7001_ $$0P:(DE-HGF)0$$aLeonard, A. W.$$b15
000835983 7001_ $$0P:(DE-HGF)0$$aMakowski, M. A.$$b16
000835983 7001_ $$0P:(DE-HGF)0$$aMcLean, A. G.$$b17
000835983 7001_ $$0P:(DE-HGF)0$$aSnyder, P. B.$$b18
000835983 7001_ $$0P:(DE-HGF)0$$aThomas, D. M.$$b19
000835983 7001_ $$0P:(DE-HGF)0$$aTskhakaya, D.$$b20
000835983 7001_ $$0P:(DE-HGF)0$$aUnterberg, E. A.$$b21
000835983 7001_ $$0P:(DE-HGF)0$$aWang, H. Q.$$b22
000835983 7001_ $$0P:(DE-HGF)0$$aWatkins, J. G.$$b23
000835983 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa6451$$gVol. 57, no. 5, p. 056016 -$$n5$$p056016 -$$tNuclear fusion$$v57$$x1741-4326$$y2017
000835983 8564_ $$uhttps://juser.fz-juelich.de/record/835983/files/Ding_2017_Nucl._Fusion_57_056016.pdf$$yRestricted
000835983 909CO $$ooai:juser.fz-juelich.de:835983$$pVDB
000835983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b5$$kFZJ
000835983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b13$$kFZJ
000835983 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000835983 9141_ $$y2017
000835983 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835983 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000835983 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015
000835983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835983 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835983 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835983 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835983 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835983 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000835983 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835983 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000835983 980__ $$ajournal
000835983 980__ $$aVDB
000835983 980__ $$aI:(DE-Juel1)IEK-4-20101013
000835983 980__ $$aUNRESTRICTED
000835983 981__ $$aI:(DE-Juel1)IFN-1-20101013