Home > Publications database > Advances in understanding of high- Z material erosion and re-deposition in low- Z wall environment in DIII-D > print |
001 | 835983 | ||
005 | 20240711113518.0 | ||
024 | 7 | _ | |a 10.1088/1741-4326/aa6451 |2 doi |
024 | 7 | _ | |a 0029-5515 |2 ISSN |
024 | 7 | _ | |a 1741-4326 |2 ISSN |
024 | 7 | _ | |a WOS:000399125300003 |2 WOS |
024 | 7 | _ | |a altmetric:23204653 |2 altmetric |
037 | _ | _ | |a FZJ-2017-05108 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Ding, R. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Advances in understanding of high- Z material erosion and re-deposition in low- Z wall environment in DIII-D |
260 | _ | _ | |a Vienna |c 2017 |b IAEA |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1500987591_25566 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E × B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code. |
536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rudakov, D. L. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Stangeby, P. C. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Wampler, W. R. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Abrams, T. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Brezinsek, S. |0 P:(DE-Juel1)129976 |b 5 |e Corresponding author |
700 | 1 | _ | |a Briesemeister, A. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Bykov, I. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Chan, V. S. |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Chrobak, C. P. |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Elder, J. D. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Guo, H. Y. |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Guterl, J. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Kirschner, A. |0 P:(DE-Juel1)2620 |b 13 |
700 | 1 | _ | |a Lasnier, C. J. |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Leonard, A. W. |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Makowski, M. A. |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a McLean, A. G. |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Snyder, P. B. |0 P:(DE-HGF)0 |b 18 |
700 | 1 | _ | |a Thomas, D. M. |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Tskhakaya, D. |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Unterberg, E. A. |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Wang, H. Q. |0 P:(DE-HGF)0 |b 22 |
700 | 1 | _ | |a Watkins, J. G. |0 P:(DE-HGF)0 |b 23 |
773 | _ | _ | |a 10.1088/1741-4326/aa6451 |g Vol. 57, no. 5, p. 056016 - |0 PERI:(DE-600)2037980-8 |n 5 |p 056016 - |t Nuclear fusion |v 57 |y 2017 |x 1741-4326 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/835983/files/Ding_2017_Nucl._Fusion_57_056016.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:835983 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129976 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)2620 |
913 | 1 | _ | |a DE-HGF |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |2 G:(DE-HGF)POF3-100 |v Plasma-Wall-Interaction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL FUSION : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|