001     835983
005     20240711113518.0
024 7 _ |a 10.1088/1741-4326/aa6451
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000399125300003
|2 WOS
024 7 _ |a altmetric:23204653
|2 altmetric
037 _ _ |a FZJ-2017-05108
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ding, R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Advances in understanding of high- Z material erosion and re-deposition in low- Z wall environment in DIII-D
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1500987591_25566
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dedicated DIII-D experiments coupled with modeling reveal that the net erosion rate of high-Z materials, i.e. Mo and W, is strongly affected by carbon concentration in the plasma and the magnetic pre-sheath properties. Different methods such as electrical biasing and local gas injection have been investigated to control high-Z material erosion. The net erosion rate of high-Z materials is significantly reduced due to the high local re-deposition ratio. The ERO modeling shows that the local re-deposition ratio is mainly controlled by the electric field and plasma density within the magnetic pre-sheath. The net erosion can be significantly suppressed by reducing the sheath potential drop. A high carbon impurity concentration in the background plasma is also found to reduce the net erosion rate of high-Z materials. Both DIII-D experiments and modeling show that local 13CH4 injection can create a carbon coating on the metal surface. The profile of 13C deposition provides quantitative information on radial transport due to E  ×  B drift and the cross-field diffusion. The deuterium gas injection upstream of the W sample can reduce W net erosion rate by plasma perturbation. In H-mode plasmas, the measured inter-ELM W erosion rates at different radial locations are well reproduced by ERO modeling taking into account charge-state-resolved carbon ion flux in the background plasma calculated using the OEDGE code.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rudakov, D. L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stangeby, P. C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wampler, W. R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Abrams, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 5
|e Corresponding author
700 1 _ |a Briesemeister, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bykov, I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chan, V. S.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Chrobak, C. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Elder, J. D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Guo, H. Y.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Guterl, J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 13
700 1 _ |a Lasnier, C. J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Leonard, A. W.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Makowski, M. A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a McLean, A. G.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Snyder, P. B.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Thomas, D. M.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Tskhakaya, D.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Unterberg, E. A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wang, H. Q.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Watkins, J. G.
|0 P:(DE-HGF)0
|b 23
773 _ _ |a 10.1088/1741-4326/aa6451
|g Vol. 57, no. 5, p. 056016 -
|0 PERI:(DE-600)2037980-8
|n 5
|p 056016 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/835983/files/Ding_2017_Nucl._Fusion_57_056016.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835983
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)2620
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21