000835984 001__ 835984
000835984 005__ 20240711113518.0
000835984 0247_ $$2doi$$a10.1088/1361-6587/aa60d2
000835984 0247_ $$2ISSN$$a0032-1028
000835984 0247_ $$2ISSN$$a0368-3281
000835984 0247_ $$2ISSN$$a0741-3335
000835984 0247_ $$2ISSN$$a1361-6587
000835984 0247_ $$2ISSN$$a1879-2979
000835984 0247_ $$2WOS$$aWOS:000398500100001
000835984 037__ $$aFZJ-2017-05109
000835984 041__ $$aEnglish
000835984 082__ $$a530
000835984 1001_ $$0P:(DE-HGF)0$$aGoniche, M.$$b0$$eCorresponding author
000835984 245__ $$aIon cyclotron resonance heating for tungsten control in various JET H-mode scenarios
000835984 260__ $$aBristol$$bIOP Publ.$$c2017
000835984 3367_ $$2DRIVER$$aarticle
000835984 3367_ $$2DataCite$$aOutput Types/Journal article
000835984 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500987726_25571
000835984 3367_ $$2BibTeX$$aARTICLE
000835984 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835984 3367_ $$00$$2EndNote$$aJournal Article
000835984 520__ $$aIon cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013–2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3–4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (~10−5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
000835984 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000835984 588__ $$aDataset connected to CrossRef
000835984 7001_ $$0P:(DE-HGF)0$$aDumont, R. J.$$b1
000835984 7001_ $$0P:(DE-HGF)0$$aBobkov, V.$$b2
000835984 7001_ $$0P:(DE-HGF)0$$aBuratti, P.$$b3
000835984 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b4
000835984 7001_ $$0P:(DE-HGF)0$$aChallis, C.$$b5
000835984 7001_ $$0P:(DE-HGF)0$$aColas, L.$$b6
000835984 7001_ $$0P:(DE-HGF)0$$aCzarnecka, A.$$b7
000835984 7001_ $$0P:(DE-HGF)0$$aDrewelow, P.$$b8
000835984 7001_ $$0P:(DE-HGF)0$$aFedorczak, N.$$b9
000835984 7001_ $$0P:(DE-Juel1)159595$$aGarcia, J.$$b10
000835984 7001_ $$0P:(DE-HGF)0$$aGiroud, C.$$b11
000835984 7001_ $$0P:(DE-HGF)0$$aGraham, M.$$b12
000835984 7001_ $$0P:(DE-HGF)0$$aGraves, J. P.$$b13
000835984 7001_ $$0P:(DE-HGF)0$$aHobirk, J.$$b14
000835984 7001_ $$0P:(DE-HGF)0$$aJacquet, P.$$b15
000835984 7001_ $$0P:(DE-HGF)0$$aLerche, E.$$b16
000835984 7001_ $$0P:(DE-HGF)0$$aMantica, P.$$b17
000835984 7001_ $$0P:(DE-HGF)0$$aMonakhov, I.$$b18
000835984 7001_ $$0P:(DE-HGF)0$$aMonier-Garbet, P.$$b19
000835984 7001_ $$00000-0003-2078-6584$$aNave, M. F. F.$$b20
000835984 7001_ $$0P:(DE-HGF)0$$aNoble, C.$$b21
000835984 7001_ $$0P:(DE-HGF)0$$aNunes, I.$$b22
000835984 7001_ $$0P:(DE-HGF)0$$aPütterich, T.$$b23
000835984 7001_ $$0P:(DE-HGF)0$$aRimini, F.$$b24
000835984 7001_ $$0P:(DE-HGF)0$$aSertoli, M.$$b25
000835984 7001_ $$0P:(DE-HGF)0$$aValisa, M.$$b26
000835984 7001_ $$0P:(DE-Juel1)130179$$aVan Eester, D.$$b27
000835984 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/1361-6587/aa60d2$$gVol. 59, no. 5, p. 055001 -$$n5$$p055001 $$tPlasma physics and controlled fusion$$v59$$x1361-6587$$y2017
000835984 8564_ $$uhttps://juser.fz-juelich.de/record/835984/files/Goniche_2017_Plasma_Phys._Control._Fusion_59_055001.pdf$$yRestricted
000835984 909CO $$ooai:juser.fz-juelich.de:835984$$pVDB
000835984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b4$$kFZJ
000835984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130179$$aForschungszentrum Jülich$$b27$$kFZJ
000835984 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000835984 9141_ $$y2017
000835984 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835984 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000835984 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835984 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA PHYS CONTR F : 2015
000835984 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835984 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835984 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835984 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835984 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835984 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835984 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000835984 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835984 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000835984 980__ $$ajournal
000835984 980__ $$aVDB
000835984 980__ $$aI:(DE-Juel1)IEK-4-20101013
000835984 980__ $$aUNRESTRICTED
000835984 981__ $$aI:(DE-Juel1)IFN-1-20101013