001     835984
005     20240711113518.0
024 7 _ |a 10.1088/1361-6587/aa60d2
|2 doi
024 7 _ |a 0032-1028
|2 ISSN
024 7 _ |a 0368-3281
|2 ISSN
024 7 _ |a 0741-3335
|2 ISSN
024 7 _ |a 1361-6587
|2 ISSN
024 7 _ |a 1879-2979
|2 ISSN
024 7 _ |a WOS:000398500100001
|2 WOS
037 _ _ |a FZJ-2017-05109
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Goniche, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1500987726_25571
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013–2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3–4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (~10−5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dumont, R. J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bobkov, V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Buratti, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 4
700 1 _ |a Challis, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Colas, L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Czarnecka, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Drewelow, P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fedorczak, N.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Garcia, J.
|0 P:(DE-Juel1)159595
|b 10
700 1 _ |a Giroud, C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Graham, M.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Graves, J. P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hobirk, J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Jacquet, P.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lerche, E.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Mantica, P.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Monakhov, I.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Monier-Garbet, P.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Nave, M. F. F.
|0 0000-0003-2078-6584
|b 20
700 1 _ |a Noble, C.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Pütterich, T.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Rimini, F.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Sertoli, M.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Valisa, M.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Van Eester, D.
|0 P:(DE-Juel1)130179
|b 27
773 _ _ |a 10.1088/1361-6587/aa60d2
|g Vol. 59, no. 5, p. 055001 -
|0 PERI:(DE-600)1473144-7
|n 5
|p 055001
|t Plasma physics and controlled fusion
|v 59
|y 2017
|x 1361-6587
856 4 _ |u https://juser.fz-juelich.de/record/835984/files/Goniche_2017_Plasma_Phys._Control._Fusion_59_055001.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:835984
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)130179
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA PHYS CONTR F : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21