000835989 001__ 835989
000835989 005__ 20240711113519.0
000835989 0247_ $$2doi$$a10.1016/j.fusengdes.2017.05.037
000835989 0247_ $$2ISSN$$a0920-3796
000835989 0247_ $$2ISSN$$a1873-7196
000835989 0247_ $$2WOS$$aWOS:000419411900051
000835989 037__ $$aFZJ-2017-05114
000835989 082__ $$a620
000835989 1001_ $$0P:(DE-HGF)0$$aDrenik, Aleksander$$b0$$eCorresponding author
000835989 245__ $$aDetection of ammonia by residual gas analysis in AUG and JET
000835989 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000835989 3367_ $$2DRIVER$$aarticle
000835989 3367_ $$2DataCite$$aOutput Types/Journal article
000835989 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510063219_4904
000835989 3367_ $$2BibTeX$$aARTICLE
000835989 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000835989 3367_ $$00$$2EndNote$$aJournal Article
000835989 520__ $$aNitrogen seeding, necessary for divertor heat-load mitigation in ITER, has been shown to lead to ammonia formation which would be a severe operational and safety issue in ITER. Predictions of ammonia production in ITER are based on data from present day fusion devices. Ammonia is mainly detected by residual gas analysis (RGA). Detection of ammonia is impeded by the presence of water and methane which, in a mixed H-D system, leave signatures in the same range of the mass spectra. A statistical model is used to ascribe an average isotope ratio to each gaseous species. The model is tested with simulated RGA recordings with varying concentration of ammonia to evaluate the sensitivity to fitting parameter boundaries, noise in the recordings and mis-matching cracking patterns. The analysis shows that the fitting procedure may in some occasions substitute species among each other, resulting in faulty concentrations. Nevertheless, the right choice of parameter boundaries ensures correct fitting results. Finally, the fitting procedure is applied to experimental data from nitrogen-seeeded discharges at AUG and JET.
000835989 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000835989 588__ $$aDataset connected to CrossRef
000835989 7001_ $$0P:(DE-HGF)0$$aAlegre, Daniel$$b1
000835989 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b2
000835989 7001_ $$0P:(DE-HGF)0$$aCastro, Alfonso de$$b3
000835989 7001_ $$0P:(DE-HGF)0$$aKruezi, Uron$$b4
000835989 7001_ $$0P:(DE-HGF)0$$aMeisl, Gerd$$b5
000835989 7001_ $$0P:(DE-HGF)0$$aMozetic, Miran$$b6
000835989 7001_ $$0P:(DE-HGF)0$$aOberkofler, Martin$$b7
000835989 7001_ $$0P:(DE-HGF)0$$aPanjan, Matjaz$$b8
000835989 7001_ $$0P:(DE-HGF)0$$aPrimc, Gregor$$b9
000835989 7001_ $$0P:(DE-HGF)0$$aResnik, Matic$$b10
000835989 7001_ $$0P:(DE-HGF)0$$aRohde, Volker$$b11
000835989 7001_ $$0P:(DE-HGF)0$$aSeibt, Michael$$b12
000835989 7001_ $$0P:(DE-HGF)0$$aTabarés, Francisco L.$$b13
000835989 7001_ $$0P:(DE-HGF)0$$aZaplotnik, Rok$$b14
000835989 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2017.05.037$$gp. S0920379617305811$$p239-243$$tFusion engineering and design$$v124$$x0920-3796$$y2017
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf$$yRestricted
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.gif?subformat=icon$$xicon$$yRestricted
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000835989 909CO $$ooai:juser.fz-juelich.de:835989$$pVDB
000835989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b2$$kFZJ
000835989 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000835989 9141_ $$y2017
000835989 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000835989 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2015
000835989 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000835989 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000835989 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000835989 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000835989 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000835989 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000835989 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000835989 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000835989 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000835989 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000835989 980__ $$ajournal
000835989 980__ $$aVDB
000835989 980__ $$aI:(DE-Juel1)IEK-4-20101013
000835989 980__ $$aUNRESTRICTED
000835989 981__ $$aI:(DE-Juel1)IFN-1-20101013