000835989 001__ 835989 000835989 005__ 20240711113519.0 000835989 0247_ $$2doi$$a10.1016/j.fusengdes.2017.05.037 000835989 0247_ $$2ISSN$$a0920-3796 000835989 0247_ $$2ISSN$$a1873-7196 000835989 0247_ $$2WOS$$aWOS:000419411900051 000835989 037__ $$aFZJ-2017-05114 000835989 082__ $$a620 000835989 1001_ $$0P:(DE-HGF)0$$aDrenik, Aleksander$$b0$$eCorresponding author 000835989 245__ $$aDetection of ammonia by residual gas analysis in AUG and JET 000835989 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017 000835989 3367_ $$2DRIVER$$aarticle 000835989 3367_ $$2DataCite$$aOutput Types/Journal article 000835989 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510063219_4904 000835989 3367_ $$2BibTeX$$aARTICLE 000835989 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000835989 3367_ $$00$$2EndNote$$aJournal Article 000835989 520__ $$aNitrogen seeding, necessary for divertor heat-load mitigation in ITER, has been shown to lead to ammonia formation which would be a severe operational and safety issue in ITER. Predictions of ammonia production in ITER are based on data from present day fusion devices. Ammonia is mainly detected by residual gas analysis (RGA). Detection of ammonia is impeded by the presence of water and methane which, in a mixed H-D system, leave signatures in the same range of the mass spectra. A statistical model is used to ascribe an average isotope ratio to each gaseous species. The model is tested with simulated RGA recordings with varying concentration of ammonia to evaluate the sensitivity to fitting parameter boundaries, noise in the recordings and mis-matching cracking patterns. The analysis shows that the fitting procedure may in some occasions substitute species among each other, resulting in faulty concentrations. Nevertheless, the right choice of parameter boundaries ensures correct fitting results. Finally, the fitting procedure is applied to experimental data from nitrogen-seeeded discharges at AUG and JET. 000835989 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000835989 588__ $$aDataset connected to CrossRef 000835989 7001_ $$0P:(DE-HGF)0$$aAlegre, Daniel$$b1 000835989 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, Sebastijan$$b2 000835989 7001_ $$0P:(DE-HGF)0$$aCastro, Alfonso de$$b3 000835989 7001_ $$0P:(DE-HGF)0$$aKruezi, Uron$$b4 000835989 7001_ $$0P:(DE-HGF)0$$aMeisl, Gerd$$b5 000835989 7001_ $$0P:(DE-HGF)0$$aMozetic, Miran$$b6 000835989 7001_ $$0P:(DE-HGF)0$$aOberkofler, Martin$$b7 000835989 7001_ $$0P:(DE-HGF)0$$aPanjan, Matjaz$$b8 000835989 7001_ $$0P:(DE-HGF)0$$aPrimc, Gregor$$b9 000835989 7001_ $$0P:(DE-HGF)0$$aResnik, Matic$$b10 000835989 7001_ $$0P:(DE-HGF)0$$aRohde, Volker$$b11 000835989 7001_ $$0P:(DE-HGF)0$$aSeibt, Michael$$b12 000835989 7001_ $$0P:(DE-HGF)0$$aTabarés, Francisco L.$$b13 000835989 7001_ $$0P:(DE-HGF)0$$aZaplotnik, Rok$$b14 000835989 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2017.05.037$$gp. S0920379617305811$$p239-243$$tFusion engineering and design$$v124$$x0920-3796$$y2017 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf$$yRestricted 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.gif?subformat=icon$$xicon$$yRestricted 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000835989 8564_ $$uhttps://juser.fz-juelich.de/record/835989/files/1-s2.0-S0920379617305811-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000835989 909CO $$ooai:juser.fz-juelich.de:835989$$pVDB 000835989 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b2$$kFZJ 000835989 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000835989 9141_ $$y2017 000835989 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000835989 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2015 000835989 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000835989 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000835989 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000835989 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000835989 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000835989 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000835989 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000835989 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000835989 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000835989 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000835989 980__ $$ajournal 000835989 980__ $$aVDB 000835989 980__ $$aI:(DE-Juel1)IEK-4-20101013 000835989 980__ $$aUNRESTRICTED 000835989 981__ $$aI:(DE-Juel1)IFN-1-20101013